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Bryan John Birch (*1931)

1954 Eggleston course at Cambridge
1956 thesis
1958 Eggleston’s book “Convexity”
1959 “On 3N points in a plane”

Math. Proc. Cambridge Phil. Soc.

1965 “Notes on elliptic curves, II”
(with Peter Swinnerton-Dyer)

“very probably 1959 was when I gave up trying to prove higher
dimensional cases of Tverberg’s theorem . . . ”
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1. A short history
Birch’s Conjecture = Tverberg’s Theorem.
[Tverberg 1966]

Let d � 1, r � 2, N := (d + 1)(r � 1).
For every affine map

f : �N �! Rd

there are r disjoint faces of �N whose f -images intersect.
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“Topological Tverberg Theorem”.
[Bárány, Shlosman & Szücz 1981]; [Özaydin 1987]; . . . )

Let d � 1, r � 2, N := (d + 1)(r � 1).
For every continuous map

f : �N �! Rd

there are r disjoint faces of �N whose f -images intersect.
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“Topological Tverberg Theorem”.
[Bárány, Shlosman & Szücz 1981]; [Özaydin 1987]; . . . )

Proof.

For linear maps: Linear Algebra [Sarkaria & Onn].

For continuous maps, r a prime: Use the Borsuk–Ulam
theorem, see [Matoušek 2003].

For continuous maps, r = p

k
: Equivariant cohomology,

spectral sequences.

For other r : open problem.
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2. A short history, with colors
[Bárány, Füredi & Lovász 1988/1990]:
On the number of halving planes

“For this we need a colored version of Tverberg’s
theorem:

Lemma 3. There is a positive integer t such that the

following holds. Assume that A,B ,C ⇢ R2
are disjoint sets

with at least t elements each, such that their union is in

general position. Then there exist three disjoint triples aibici ,

ai 2 A, bi 2 B, ci 2 C (1  i  3) such that

\iconv(aibici) 6= 0.

The smallest value of t for which we managed to prove this
lemma is 4, and we do not have a counterexample even for
t = 3. For brevity’s sake we give the proof for t = 7.”
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in such a way that �i has one red, one white, and one green

vertex for every i = 1, . . . , r and the intersection of these

triangles is non-empty.
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For d � 1, r � 2, determine the smallest N(r , d) such that if

N � N(r , d) the following holds:
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, where the N + 1 vertices of �N

have d + 1 colors, each color class of size |Ci | � r , then
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2. A tight colored Tverberg theorem
“Tight Colored Tverberg Theorem”
[Blagojević, Matschke & Z. 2009]
Let d � 1, r � 2 prime, N := (d + 1)(r � 1),
f : �N �! Rd

continuous, where the N + 1 vertices of �N
have m � d + 2 colors, each color class of size |Ci |  r � 1.

Then �N has r disjoint rainbow faces whose f -images intersect.

tight!
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Proof Scheme

Reduction Lemma
([Sarkaria 2000])
It suffices to prove the Theorem for the special case
|C0| = |C1| = · · · = |Cd | = r � 1, |Cd+1| = 1

. . . see [de Longueville 2003]

Configuration Space/Test Map (CS/TM) Scheme
([Van Kampen 1932], [Sarkaria 1991], [Živaljević 1997+])

I combinatorial configuration space
I deleted joins

. . . see [Matoušek 2003]!
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Proof 1 . . . using Degree:

F : (�r�1,r )
⇤(d+1) �!Zr S

N�1

map of orientable pseudomanifolds

• deg(F ) mod r the same for all Zr -equivariant F

• deg(F ) = 0 if F extends to (�r�1,r )⇤(d+1) ⇤ [r ]
• deg(F0) = (r � 1)!d for special configuration:

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

1

2

3

4

1716

15

16

17



Proof 2 . . . using Obstruction Theory:

[tom Dieck 1987, Sect. II.3]
(apply with care, as Sr -action not free!)

Proof works, i.e.

(�r�1,r )
⇤(d+1) ⇤ [r ] 6�!Sr S

N�1

if and only if
r - (r � 1)!d+1

i.e. if
r is prime.



Proof 3 . . . using Equivariant Index:

[Fadell–Husseini 1988]

• still more complicated
( . . . equivariant cohomology, index, spectral sequences)

• avoids reduction to the special case
|C0| = |C1| = · · · = |Cd | = r � 1, |Cd+1| = 1

• thus allows for generalizations:
Tight cases of the Tverberg–Vrećica Conjecture
[Blagojevic, Matschke & Z. 2011]
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Tverberg strikes back

Lemma (“Tverberg unavoidable color class”).
[Blagojević, Frick & Z. 2014]
Let d � 1, r = p

k
, N � (r � 1)(d + 1),

let C be a set of |C |  2r � 1 vertices of �N ,

and f : �N ! Rd
continuous.

Then every Tverberg r -partition has a block

with at most 1 vertex in C .

Proof. f : �N ! Rd has a Tverberg r -partition, by TTT.

Pigeonhole Principle.
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Tverberg strikes back
“Weak colored Tverberg Theorem”.
[Blagojević, Frick & Z. 2014]
Let d � 1, r = p

k
, N � 2(r � 1)(d + 1), and

let the vertices of �N be in d + 1 color classes C0, . . . ,Cd
of size |Ci |  2r � 1.

Then for every continuous f : �r ! Rd
,

�N has r disjoint rainbow d-faces whose f -images intersect.

Proof. Let gi : �N ! R measure the distance from
the subcomplex of �N of all faces with at most 1 vertex in Ci .

(f , g0, . . . , gd) : �N ! R2d+1 has a Tverberg r -partition, by TTT.

Thus there are x1, . . . , xr 2 �N in disjoint faces with
f (x1) = · · · = f (xr ).

For each i , there is a block Fj with at most 1 vertex in Ci , so
gi(xj) = 0, while also gi(x1) = · · · = gi(xr ).

Thus each block has at most 1 vertex in Ci .
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Let d � 1, r = p

k
, N � 2(r � 1)(d + 1), and

let the vertices of �N be in d + 1 color classes C0, . . . ,Cd
of size |Ci |  2r � 1.

Then for every continuous f : �r ! Rd
,

�N has r disjoint rainbow d-faces whose f -images intersect.

Proof. Let gi : �N ! R measure the distance from
the subcomplex of �N of all faces with at most 1 vertex in Ci .

(f , g0, . . . , gd) : �N ! R2d+1 has a Tverberg r -partition, by TTT.

Thus there are x1, . . . , xr 2 �N in disjoint faces with
f (x1) = · · · = f (xr ).

For each i , there is a block Fj with at most 1 vertex in Ci , so
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Plan

0. Why do you care?
1. A short history
2. A short history, with colors
3. A tight colored Tverberg theorem
4. Tverberg strikes back
5. More



5. More
Elementary proof?

Proof for r not prime powers?

How to find a solution?

Many solutions?

Without colors: “Dutch Cheese Problem”
Conjecture by [Sierksma] that there are at least (r � 1)!d
Tverberg partitions.
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