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Any 3N points in a plane
can be partitioned into N triangles
that intersect.













Any 3N — 2 points in a plane
can be partitioned into N subsets
whose convex hulls intersect.
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“On 3N points in a plane”
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“Notes on elliptic curves, II"
(with Peter Swinnerton-Dyer)
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“... I recall that the weather was bitterly cold in Manchester.
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Letd>1,r>2, N:=(d+1)(r—1).
For every affine map

f:Ay — R

there are r disjoint faces of Ay whose f-images intersect.
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[Barany, Shlosman & Sziicz 1981]; [Ozaydin 1987]; ...)

For linear maps: Linear Algebra [Sarkaria & Onnl.

For continuous maps, r a prime: Use the Borsuk—Ulam
theorem, see [Matousek 2003].

For continuous maps, r = p*: Equivariant cohomology,
spectral sequences.

For other r: open problem.
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[Barany, Fiiredi & Lovasz 1988/1990]:
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Lemma 3. There is a positive integer t such that the
following holds. Assume that A, B, C C R? are disjoint sets
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On the number of halving planes

Lemma 3. There is a positive integer t such that the
following holds. Assume that A, B, C C R? are disjoint sets
with at least t elements each, such that their union is in
general position. Then there exist three disjoint triples a;b;c;,
a, €A b €B,cieC(1<i<3)such that

ﬂ,-conv(a,-b,-c,-) 7é 0.

The smallest value of t for which we managed to prove this
lemma is 4, and we do not have a counterexample even for
t = 3. For brevity's sake we give the proof for t = 7."
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triangles is non-empty.
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have d + 1 colors, each color class of size |C;| > r, then
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[Blagojevi¢, Matschke & Z. 2009]

Letd > 1, r >2 prime, N := (d + 1)(r — 1),
f: Ay — R continuous, where the N + 1 vertices of Ay
have . each color class of size

Then Ay has r disjoint whose f-images intersect.
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Configuration Space/Test Map (CS/TM) Scheme
([Van Kampen 1932], [Sarkaria 1991], [Zivaljevi¢ 1997+])

» combinatorial configuration space
» deleted joins

. see [Matousek 2003]!
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[tom Dieck 1987, Sect. 11.3]
(apply with care, as &,-action not free!)

Proof works, i.e.

(Ar—l,r)*(d+1)*[r] —7e, sh-t

ri(r— 1)+t

ie. if
r is prime.
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Proof. f : Ay — R? has a Tverberg r-partition, by TTT.

Pigeonhole Principle.
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Elementary proof?
Proof for r not prime powers?
How to find a solution?

Many solutions?
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