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Rayleigh Bénard Convection /
Boussinesq Approximation

 Conservation of Momentum

g*—UAU+(ﬁ-V)U+in+ fkx0 = gTIZ

ot Po
* Incompressibility

V-u=0

« Heat Transport and Diffusion
%T —kAT +(U-V)T =0



The Boundary Conditions
We partition the boundary of {2 into:

Ly :{(x,y,z) SR Z:O}a
Fb:{(mayaz) €fl:z= _h}7
I's ={(z,y,2) € Q:(x,y) € OM, —h < z < 0}.
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Sobolev Spaces
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Rayleigh Bénard Convection /
Boussinesq Approximation

 Conservation of Momentum

g*—UAU+(ﬁ-V)U+in+ fkx0 = gTIZ

ot Po
* Incompressibility

V-u=0

« Heat Transport and Diffusion
%T —kAT +(U-V)T =0



Temperature Estimates

« Maximum Principle

HTHLOO <C, +ClHToHLw

 Gradient Estimates
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 Estimate of the Nonlinear Term

H(G-V)T . ATdx

< cj]

LG‘

 Interpolation/Calculus Inequality
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* Young's Inequality
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Question:

u(z)
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dr
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K ?

To answer this question we have to deal
with the Navier-Stokes equations.



The Navier-Stokes Equations

—U—0AU+(U-V)U A . Vp:F
ot Po

Plus Boundary conditions, say periodic in the box

Q=[0, L]’



- We will assume that  p, =1

 Denote by (@)= IQ @(x)dx
* Observe that if <UO> = < 1?> =0 then <U> = 0.
* Poincaré Inequality

Forevery pe H' with  (@)=0 we have

\p



Navier-Stokes Equations Estimates

 Formal Energy estimate

;gt i, + [@-vya-u+ [vp-u=(F,0)

« Observe that since V-u=0 we have
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By the Cauchy-Schwarz and Poincaré inequalities

1d
2 dt
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By Poincaré inequality
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By Gronwall’s inequality
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Theorem (Leray 1932-34)

For every T>0 there exists a weak solution
(in the sense of distribution) of the
Navier-stokes equations, which also satisfies

U €C,([0,T], L () NL*([0, T], H(€Y))

The guestion of uniqueness of weak solutions
for the three-dimensional Navier-Stokes
equations is still open.



Strong Solutions of Navier-Stokes

U e C([0, T], H(Q)NL ([0, T], H* ()

Enstrophy
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Formal Enstrophy Estimates

1d

UL ’, +0Ad[, +1(T- V)T - (~AG) +[ Vp(-AT) =] T - (~A)
Observe that [Vp-(~AG)dx =0
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Nonlinear Estimates

One needs to find estimates for the nonlinearity:

J(G- V)i - (—AU)| <7
For example by HOlder inequality

J(@-V)u - (-A0)| <|d] . v |Ad

N N L2



Calculus/Interpolation (Ladyzhenskaya)

Inequalities
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The Two-dimensional Case

T
y<cy® & [y(r)dr <K(T)
0

K(T)

VAN

= y(f)

Global regularity of strong solutions to the
two-dimensional Navier-Stokes equations.



Navier-Stokes Equations

« Two-dimensional Case

* Global Existence and Uniqueness
of weak and strong solutions

* Finite dimension global attractor



The Three-dimensional Case

112
Recall that Yy=¢€,+ HVU 2

4
L° +e§)y

One can show that y < C(HU

Which implies that

t
c[(Ju(z)]is+e3)dx

y(t)<y(Q)e°



The Question Is Again Whether:

A
Lﬁdz'S K ?

flue)

<Which is the $1 Million Question!!
* Or the -12 Bulls/Cows!!



Folas-Ladyzhenskaya-Prodi-Serrin
Conditions

A strong solution of the three-dimensional
Navier-Stokes equations exists on the
Interval [0, T] if and only if

ue LP((0,T),L4(Q)) for —4+ —=1

For 1 <p <o



The case of p=co and g=3 has been

established by L. Escauriaza and G. Seregin
and V. Sverak.



One can instead use the following Sobolev inequality

|0

T
Which leads to y < Cy3 & jy(z-)dz- <K
0

Theorem (Leray 1932-1934)

There exists

—

t ,-o.L) such that

* uO Hl’

y(t) <oo forevery tel0,T.).



Navier-Stokes Equations

* The Three-dimensional Case
* Global existence of the weak solutions
* Short time existence of the strong solutions
* Unigueness of the strong solutions

* Open Problems:
* Uniqueness of the weak solution.
* Global existence of the strong solution.



Vorticity Formulation

Ow
ot
Vorticity Stretching Term (e - V)U

VAG+(G-V)o—(&-V)i=Vx f

—»

Two dimensional case (a) V)u =0

8—60—VA0)-|-(U V)d=Vx f

ot

. 2 . . .
‘a)(x,t)‘ Satisfies a maximum principle



The Three-dimensional Case
(w-V)U £E0

~ Z
(0-V)U ~ z°

For large initial data @y the vorticity balance takes
the form

Z ~7° = Potential “Blow Up”!!



Euler Equations =0

Theorem (Lechtenstein-1925): Let u,e Ct«, then there

exists T.(uy) > 0, where the solution of the 3D Euler
equations exists and unique, and u € C([0, T.], C12).

Theorem (Ebin-Marsden,Kato, Temam,...): Let uye HS, for

s > 5/2, then there exists T.(u,), where the solution of the

3D Euler equations exists and unique, and
u € C([0, T.],Hs).

Question: Does there exists a global weak solution for
the 3D Euler equations?

Answer: YES (Wiedemann —February 2011)



e Beale-Kato-Majda

T
If j“a’(t)“Lw dt <o° ihen we have existence and
(0)

unigueness on the interval [O, T]

e That is, one has to “control” the HCT)(t)HLOO

INn some way!!



« Constantin, Fefferman and Majda:

Provided sufficient condition involving the Lipschitz
regularity of the direction of the vorticity:

E =

E‘ of



Weak Solutions for 3D Euler

*Existence of family (non-uniqueness) of
weak solutions to the Cauchy problem of the
3D Euler has been recently proved by
Wiedemann (2011).

Delellis — Szekelyhidi showed the existence
of a non-trivial family of weak solutions to the
3D Euler equations with compact support in
space and time.



The present proof is not a traditional PDE
proof.

It shares many ideas of the proof of the
[Nash (1974), Kuiper (1955)] theorem of
iInvariant imbeddings of surfaces. It uses the
formalism of differential inclusions, convex
Integration and accumulation of oscillations.



Earlier results were established
by Shnirelman and Sheffer.



lll-posedness of 3D Euler

Theorem (Bardos-Titi 2010):
(i) Let uy,uz € L2 _(IR) then the shear flow

u(x,t) = (u1(x2), 0, uz(x1 — tug(x2))

is a weak solution of the Euler equations, in the sense of distribution, in Q = IR3.

(it) Let ui,u3 € L2 . (IR) then the shear flow above is a weak solution of
the Fuler equations, in the sense of distribtions. Furthermore, in this case the

enerqy of this solution is constant.

(i5i) There exist shear flow solutions of the above form which, for t = 0,
belong to C%<, for some o € (0,1), and for t # 0, they do not belong to CP
for any B > o?.



This shear flow was used earlier by
DiPerna and Majda to show that weak limit
of oscillatory classical solutions of Euler
equations does not converge to a solution

of Euler equations.



Ruling Out Certain Weak
Solutions of Euler

The work of DelLellis — Szekelyhidi implies
that there are non-unigue weak solutions
of Euler even with very smooth initial data
(for example u, = 0).

Question: Is there a natural criterion for
ruling out certain weak solutions of Euler?



Ruling Out Criterion

In the absence of physical boundaries

A weak solution of Euler which cannot be
achieved as a limit of Navier-Stokes, as the
viscosity tends to zero, should be ruled out.



Vanishing Viscosity Solutions

[Bardos, Titi, Wiedemann, 2012]

For initial data of the form (u1(x2), 0, u3(z1))
there are infinitely many weak solutions of
Euler equations.

The shear flow solution

(Ul (562), O, Us (5131 — tu1 (5132)))

IS the vanishing viscosity limit solution.



Two-Dimensions Euler
O
ot
U=V (k)

- (G -V)@ =0

AwlZ=a7

e Yudovich proved a weak version of the

maximum principle, thatis  |e(t)] . <[,
The idea of for the uniqueness
[les = 2D/, <c- plAay],

‘a‘SZ
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Special Results of Global Existence for
the three-dimensional Navier-Stokes

Theorem (Fujita and Kato)

Let ||u,|,,» besmall enough . Then the3D

Navier - Stokes equations are globally
well - posed for all time with such initial
data. Thesame result holds if theinitial data

issmall in L*(Q) (Kato, Giga & M iyakawa)



% D
<

e () — Revolution Domain around the z - axis

[away from z - axis]

 Let us move to Cylindrical coordinates

Theorem (Ladyzhenskaya) Let
Uo (X, Y,2) = (o7 (r, 2), 9, (1, 2),9, (1, 2))

be axi-symmetric initial data. Then the three-dimensional
Navier-Stokes equations have globally (in time) strong solution
corresponding to such initial data. Moreover, such strong solution

remains axi-symmetric.



Theorem (Leiboviz, Mahalov and E.S.T.)

Consider the three-dimensional Navier-Stokes
equations in an infinite Pipe. Let

U, = (¢ (r,n0+az),p,(r,n0+az),p.(r,n0+az))

(Helical symmetry). For such initial data we have
global existence and uniqueness. Moreover,
such a solution remains helically symmetric



Remarks

For axi-symmetric and helical flows the vorticity
stretching term is nontrivial, and the velocity
field is three-dimensional.

In the inviscid case, i.e. =0, the question of
global regularity of the three-dimensional helical
or axi-symmetrical Euler equations is still open.
Except the invariant sub-spaces where the
vorticity stretching term is trivial.



More about vorticity stretching

In the two-and-half dimensional Navier-Stokes
and Euler equations (u,v,w)(x,y).

(u,v) satisfy the 2D Navier-Stokes/Euler
equations, and w Is a passive scalar

The vorticity stretching term is non-trivial.

ow  Ow ou Ov B owou  Ow ov

((9y7 6’x’0).(8x’8y70) - Oy O0r Oz Oy



Does 2D Flow Remain 2D?

[Bardos, Lopes-Filho,Nussenzveig-Lopes, Niu, Titi (2012)]

* Let u, be a function of on (x,y), then the Leray-Hopf weak
solution of the 3D Navier-Stokes remains a function of only

(X,Y)-
« Similar result holds for the Navier-Stokes equations with
axi-symmetric initial data, or helical initial data.

* Let u, be a function of (x,y), then the weak solution of the 3D
Euler might become a function of (x,y,z).

« Also, if the initial data is axi-symmetric or helical symmetric,
the weak solutions of Euler might break the symmetry.



 Theorem [Cannone, Meyer & Planchon]
[Bondarevsky] 1996

Let M be given, as large as we want. Then there exists
K(M) such that for every initial data of the form

.~ 2T

. 7\’0 Ik.XT

U, = E u-¢€ [VERY OSCILLATORY]
‘ﬂZK(M)

satisfying ||ug||gn < M the three-dimensional Navier-Stokes
equations have global existence of strong solutions.

Remark Such initial data satisfies HUOHH% <<1.

So, this is a particular case of Kato’s Theorem.



Raugel and Sell (Thin Domains)

Global Existence (in time) of strong solutions
for the 3D Navier-Stokes equations In thin
domains, for large (depending on the
thinness of the domain), initial data.

. Kukavica and M. Ziane, made a significant
Improvement in the size of the data for
which the above result holds, and
Investigated other physical configurations.



Stability of Strong Solutions

* [Ponce, Sideris, Racke & Titi, CMP 1994]
The set of globally regular solutions of the
3D Navier-Stokes Is stable under small
perturbations in the initial data and forcing.



The Effect of Rotation

Z—T+(U-V)U+Vp+f)xﬁ=0

V-u=0

e There is Q, (T, U,) such that if |3 > Q, thesolutionexists on [0, T).

e That is there exists T, (UO,‘Q‘) such that thesolution exists on [0, T;).

Observe that T, — « as ‘fl‘ —> 0

*Babin, Mahalov and Nicolaenko

Embid and Majda

Chemin, Desjardines, Gallagher, Grenier
Masmoudi

«Zlane

Liu and Tadmor



An lllustrative Example

Inviscid Burgers Equation
u +uu, =0 INn R
u(x,0) = Uy (X)

olf U,(X) is decreasing function on some subinterval
of R then the solution of the above equation

develops a singularity (Shock) in finite time.

The solution is given implicitly by the relation:
u(x,t) =u,(x—tu(x,t))



The Effect of the Rotation

ueC zeC
u, +uu, +1Qu =0

Z

uO (Z) — U(Z1O)

v(z,t) =e"u(z,t)






If Q>>1,(le. Q>Q,(Uu,))

gv remains finite and the

0z
solution remains regular forall t>0.



Fast Rotation = Averaging
v(z,t) =v(z,0) - je“mv(z,t)vz(z,t)dt

Riemann-Lebesgue Lemma

lim Tsin(kt)go(t)dt =0

K—o0



The above complex system is
equivalent to 2D Rotating Burgers:

U=u,+Iu,, z=X+Iy

0 —=1)
1 0




How can the computer help In
solving the3D Navier-Stokes
equations and turbulent flows?



Reynolds numbers = Ratio of
the Intensity of the Nonlinear
Effect to the Intensity of the
Viscous Linear Effect.



Weather Prediction

In the atmosphere the Reynolds
number is of the order of 7x108

In this case the number of
eguations needed to be
solved at each time step is of
the order of Re%/4, i.e. 1018,



Flow Around the Car

For the around a moving car the
Reynolds number is of the order of
10°

In this case the number of
eqguations is of the order of
1010



How long does It take to
compute the flow around the
car for a short time?



5 years?



50 years?



500 years?



5000 years!!!



Large Scale Oceanic
Circulations
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Rayleigh Bénard Convection /
Boussinesq Approximation

 Conservation of Momentum

g*—UAU+(ﬁ-V)U+in+ fkx0 = gTIZ

ot Po
* Incompressibility

V-u=0

« Heat Transport and Diffusion
%T —kAT +(U-V)T =0



Bénard Convection/Boussinesq
Approximation

2
évH —u[AH +%ij +(Vy - V)V, +W§VH +iVH p+f kxv, =0

ot Po
2
éW—u A +8_2 W+ (v, -VH)W+W2W+i£ p+Tg=0
ot 0Z 0z  p, Oz
0
V, -vH+§W:O
0 0

—T —-kAT +(v, -V )T +W—T =
p (H H) pe PR

Here (v, ,w)=0.



Typical Scales in the Ocean

* horizontal distance L~10°m
- horizontal velocity U ~10" m/s
+ depth  H~10°m

» Coriolis parameter f ~10%1/s

©gavity g ~10 m/s®
* density O ~103 kg/m3



Calculating the typical values

« Typical vertical W = UH/L ~10"* m/s

velocity
» Typical pressure P=p,gH ~10" Pa

. Typical time scale T=L/U ~10 s



Scale Analysis of Vertical Motion —
The Ideal Case

QW-I—(VH -VH)W-I—WQW-I-iE p+Tg=0
ot oz  p, Oz
2
W+UW+W + i +Tg=0
T L H Hp,

10" +10* +10™"+10+10=0




Hydrostatic Balance




The Primitive Equations of Large
Scale Oceanic and Atmospheric
Dynamics

OV, +(V, -V IV, +WO Vv, +V, p+ f kxv,
=AA, v, +A0,V,

o0,p+gTlT =0

V,v,+0,w=0

T.+(vy, -V )T +WT =Q+K A T+K,T,



e Introduced by Richardson (1922)

For Weather Prediction

e J.L.Lions, R. Temam, S. Wang (1992)
Gave Some Asymptotic Derivation of the
Model.



Previous Results

« J.L. Lions, Temam, S. Wang (1992), and Temam, Ziane (2003)
The global existence of the weak solutions (No Unigqueness).

 Guillen-Gonzalez, Masmoudi, Rodriquez-Bellido (2001), and Temam,
Ziane (2003)
The short time existence of the strong solution

 Temam, Ziane (2003)
Global Existence of Strong Solution for the 2-D case.

e C. Hu, Temam, Ziane (2003)
Global Regularity for Restricted (Large) Initial Data in Thin Domains.



e C. Caoand

Results
E.S.T. [Annals of Mathematics

(2007)]. [arXiv March 1, 2005].

* the global existence of the weak solutions
(Galerkin method/announced)

* the global existence and unigueness
of the strong solutions.

* existence of the global attractor

(announced
* See also,

).

Ning Ju (2007)] for the

existence of global attractor.



The Primitive Equations of Large
Scale Oceanic and Atmospheric
Dynamics

OV, +(V, -V IV, +WO Vv, +V, p+ f kxv,
=AA, v, +A0,V,

o0,p+gTlT =0

V,v,+0,w=0

T.+(vy, -V )T +WT =Q+K A T+K,T,



A different formulation of the PE

W0, Y,2)= [ ViV (0 y,6) 4
(. Y.2) = P, (%, Y) -0 T(x,y,£) dé

VH (X1 y):%j_thH (X1 y,é:) dé: 1 VH °\7H =0
Vi (%, Y,2) =V (X, Y, 2) =V, (X, Y)



The Barotropic Mode — The
Averaged Part of the Horizontal
Velocity

OV, +(V,, -V )V, +Wo v, + FkxV, +V,p.

=AA V. +VHfh gT dz



The Baroclinic Mode —The
Fluctuation Part of the Horizontal
Velocity

at\7H +(\7H 'VH)VH +(\7H'VH)VH +(V, 'VH)VH T

(—rhVH -V, dz) OV, + fkxV, —

G, VI +(V, V), =

AAT, +AD,T, +V, [ gT dE-V, [ gT dé



The IDEA — Focus on Burgers
Equation

u —vAuU+(Uu-V)u=0
We have
2:O

1 > 1
— 0. u(x,t)] ——Aju(x,t
> Ju(x,t) > u(x,t)

2
2 Oou. 1
+ — | +—=U-V|u(x,t
,ZJ: [8x.] 2 ‘ ()

J

2 00
A maximum principle for ‘U(X,t)‘ and L™ bound.

Global Regularity for 1D, 2D and 3D Burgers Equation



The Pressure Term!!

* |s the major difference between Burgers
and the Navier-Stokes equations.

* What about in our system?



The Averaged Equation is “like” the
2D Navier-Stokes.

oV, + (v, -V,)v, +Wo,v, fkxV, +V,, p.

Z

= A, +V, [ oT dz

Where  Pq (X, y)”



The Fluctuation Equation is “like”
3D Burgers Equations — Has No
Pressure Term!!

OV +(Vyy -V Wy +(V V)V + (V- V)V, +

(—J'_ZhVH -V, dz) OV, + fkxV, —

(\7H 'VH)VH +(VH '\7H )\7|-|

= AAT, + AT, +V, [ gT dE-V, [ gT d¢




A-priori Estimates




One of the Main Estimates Used

By Ladyzhenskaya inequality we usually have:

U 0 [h(X, v,2) f(X, v,z) 9(x Y,z) ]dxdydz‘
< CI R Iy I P I F Iy I F I )

L% (Q) H' (Q) L* (Q) H' (Q)

But here instead we have [Cao-Titl]:

1, [ uexy.2)d2) fx y.2) ox y.2) oy
o7 1Y Y P O T

L° (Q) H' (Q) L* (Q) H' (Q)



Using this observation about the pressure
that it is effectively a function of two
variables:

|. Kukavica and M. Ziane, (Nonlinearity 2007)
obtained similar results for the case of
Dirichlet boundary conditions, on top and
bottom, and periodic boundary conditions in
the horizontal direction.



Back to the 3D Navier-Stokes
Equations




New Criterion for Global Regularity
of the 3D Navier-Stokes Equations

Theorem (C.Cao and E.S. T. 2008) :
Thestrongsolution of the 3D Navier - Stokes equations exists on

theinterval [0, T] for as long as

o,pe L ((0,T),L(Q)), E+§s§, where r>1 andszf—;.
r s

This is different than the result of L. Berselli and G.P. Galdi
(2002) and of Y. Zhou (2005) where the assumption is on VP.



Recently this result was improved by Zhou and Pokorny

* There are other global regularity criteria
Involving the pressure due to:

Chae
Kukavica
and
Struwe.



« Sereigen and Sverak:

Global regularity if the pressure Is bounded
from below.



Most Recent Criterion for Global Regularity

Theorem (Cao and T.) [Arch. Rational Mech. Anal. 2011]

The three-dimenstonal Navier-Stokes equations has a unique storng solution
on the interval [0,T] if and only if for some j, k € {1,2,3}

ou

5 € LA([0,T], L*(IR?)); when k # j,and where
k

3 2 3
a>3,1- f<oo,and —+ = - @t :
a [ 20

or

ou

5 e L°(]0,T), L*(IR?)); where a > 2,1+ < o0,
j

3 2 2
and — + — - 3la+ )
a 0 4o




The Primitive Equations for
Stratified Fluid Flows

oV, + (v, -V,)v, +Wo,v, +iVH p+ f IvaH

Po
=AA, Vv, +A0,V,
0,p=gT
V,-vy+0,w=0
T.+(v, -V )T +wT, =0



Global Regularity of the Primitive Equations
with vertical Diffusion Turbulence Mixing

Cao-Titl. [Comm. Math. Physics 2011]

oV, + (v, -V,)v, +Wo,v, +iVH p+ f IZXVH
Lo
= AALVy, +A\/aszH
0,p=gT
V, vy, +0o,w=0

T.+(v, -V )T +WT, =, T,



Global Regularity of the Primitive Equations
with Vertical Diffusion Turbulence Mixing

Cao-LI-Titt [ARMA 2014]

* Improvement of the results with Vertical
Diffusion Turbulence Mixing




Global Regularity of the Primitive Equations
with Horizontal Diffusion Mixing

Cao-Li-Titi [JDE 2014]

« Global Regularity of PE with Horizontal Diffusion
Turbulence Mixing

oV, +(v, -V,)v, +wov, +iVH p+f IvaH

Lo
— AhAHVH + A\/aszH
0,p=9T
V,-v,+0,w=0
T.+(v, -V )T +WT, = AT




Global Regularity of the Primitive Equations
with Horizontal Viscosity & Diffusion Mixing

Cao-Li-Titi [2014]

« Global Regularity of PE with Horizontal Viscosity and
Horizontal Diffusion

OV, +(V, -V, )V, + W0V, +iVH p+ f kxv,

Lo
— AhAHVH
o,p=gT
V,-v,+0,w=0
T.+(v, -V )T +WT, =, AT




Generalization of the
Brezis-Gallouet inequality

[Cao-Li-Titi-2014]

Let F € WH2(Q), with p > 3, be a periodic function. Then
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Gronwall’s Inequality for Systems

Let m(t), K(t), A;(t), Bi(t) > 0s.t. A; >e, fori=1,--- n with
K € L .([0,00)), and m(t) < K(t)log Y"1, A;(t). Suppose that
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for any ¢t € (0,7), where & > 1 and ( > 1 are two constants. Then
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where () is a continuous function on |0, 00), which is given explicitly in terms of
A;(0),i=1,---,n, and K.



Blowup of Inviscid Primitive Equations

Cao-lbrahim-Nakanishi-Titi (2012) [Comm. Math Phys.
2013], see also Wong (2012)]

Ut + Uy + VUy + WU, + pr = 0,
V¢ + UV + VVy + WU, + py = 0,
p. +1 =0,
T +uly + 0T, +wTl, = kgAgT + k3T,
Ugp + Uy +w, = 0.
In the horizontal channel

Q={(x,y,2):0- z- H, (z,y) € R*}



Reduced Inviscid Primitive Equations

We take vg = 0 and 1o = 0. This implies that
v=0 and 1T'=0. This yields the reduced
2D system

Up + Uy + wu, + pr = 0,
pzz(),
U, + w, = 0.

In the strip
M={(x,2):0- z- H,z € IR}.



Boundary Conditions and the Pressure
w‘z:H — w|z=0 =0

u, p and w are periodic in the x-direction, with
period L.

u and p are odd functions of x, and w Is an
even function.
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pe(x,t) = u(x, z,t)ug.(x, z,t) dz



The Reduced System

o H
Ugt + (UUg )z + Wty + Wiy, — 7 / (utty )z dz =0
0

U, +w, =0

Since u Is an odd function and and w Is and even
with respect to x we have:

u(0, z,t) = w,(0,2,t) =0



The Reduced Equation at x=0

Denote by W(z,t) = w(0, z,t) then
Wi, — (Wo)2 + WW,, + 2 [o (W,)2dz =0

Which blows up in finite time. [Childress-
lerley-Spiegel-Young, 1989]



Self-similar Blowup Solution

Wi(z,t) = 2% with o(0) = p(H) =0

T—17
Then

o — ()2 + "+ 2 [ (¢ (2)2dz =0

Which has a non-trivial solutions.



Thank You!



