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Rayleigh Bénard Convection / 

Boussinesq Approximation

• Conservation of Momentum

• Incompressibility

• Heat Transport and Diffusion
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The Boundary Conditions

We partition the boundary of ­ into:

¡u = f(x; y; z) 2 ­ : z = 0g;

¡b = f(x; y; z) 2 ­ : z = ¡hg;

¡s = f(x; y; z) 2 ­ : (x; y) 2 @M; ¡h · z · 0g:

on ¡u :
@v

@z
= h ¿; w = 0;

@T

@z
= ¡®(T ¡ T ¤);

on ¡b :
@v

@z
= 0; w = 0;

@T

@z
= 0;

on ¡s : v ¢ ~n = 0;
@v

@~n
£ ~n = 0;

@T

@~n
= 0;



Sobolev Spaces
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Rayleigh Bénard Convection / 

Boussinesq Approximation

• Conservation of Momentum

• Incompressibility

• Heat Transport and Diffusion

kgTukfpuuuu
t








0

1
)(




0 u


0)( 



TuTT

t






Temperature Estimates

• Maximum Principle

• Gradient Estimates
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• Estimate of the Nonlinear Term

• Interpolation/Calculus Inequality

• Young’s Inequality
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By Gronwall’s inequality



Question:
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To answer this question we have to deal 

with the Navier-Stokes equations.



The Navier-Stokes Equations
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• We will assume that

• Denote by 

• Observe that if   then

• Poincaré Inequality

For every               with    we have
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Navier-Stokes Equations Estimates

• Formal Energy estimate

• Observe that  since                        we have
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By the Young’s inequality



By Poincaré inequality
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Theorem (Leray 1932-34)
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For every            there exists a weak solution 

(in the sense of distribution) of the  

Navier-stokes equations, which also satisfies

0

The question of uniqueness of weak solutions 

for the three-dimensional Navier-Stokes 

equations is still open.



Strong Solutions of Navier-Stokes
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Formal Enstrophy Estimates
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By  Cauchy-Schwarz



Nonlinear Estimates
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Calculus/Interpolation (Ladyzhenskaya) 

Inequalities

Denote by
2

0 2L
uey






)()( &
0

2  


Kdyycy 

)(
~

)(  Kty

The Two-dimensional Case

Global regularity of strong solutions to the 

two-dimensional Navier-Stokes equations.



Navier-Stokes Equations

• Two-dimensional Case

* Global Existence and Uniqueness 

of weak and strong solutions

* Finite dimension global attractor



The Three-dimensional Case

2

0 2L
uey




yeucy
L

)( 2

0

4

6 






t

L
deuc

eyty 0

2
0

4
6 ))((

)0()(


Recall that

One can show that

Which implies that



The Question Is Again Whether:

* Which is the $1 Million Question!!

* Or the -12 Bulls/Cows!!
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Foias-Ladyzhenskaya-Prodi-Serrin 

Conditions

A strong solution of the three-dimensional 

Navier-Stokes equations exists on the 

interval [0,T] if and only if 

For

u 2 Lp((0; T ); Lq(­)) for
2

p
+

3

q
= 1

1· p·1:



The case of p=1 and q=3 has been 

established by L. Escauriaza and G. Seregin

and V. Sverak.



One can instead use the following Sobolev inequality
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Navier-Stokes Equations

• The Three-dimensional Case

* Global existence of the weak solutions

* Short time existence of the strong solutions

* Uniqueness of the strong solutions

• Open Problems:

* Uniqueness of the weak solution.

* Global existence of the strong solution.



Vorticity Formulation
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Satisfies a maximum principle.
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The Three-dimensional Case

Potential “Blow Up”!!
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For large initial data         the vorticity balance takes 

the form



Euler Equations  º=0

Theorem (Lechtenstein-1925): Let u02 C1,®, then there 

exists T*(u0) > 0, where the solution of the 3D Euler 
equations exists and unique, and  u 2 C([0, T*], C

1,®).

Theorem (Ebin-Marsden,Kato,Temam,…): Let u02 Hs, for

s > 5/2, then there exists T*(u0), where the solution of the 

3D Euler equations exists  and unique, and  
u 2 C([0, T*],H

s).

Question: Does there exists a global weak solution for 

the 3D Euler equations?

Answer: YES (Wiedemann –February 2011)



● Beale-Kato-Majda

If then we have existence and 

uniqueness on the interval 

● That is, one has to “control” the 

in some way!!
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• Constantin, Fefferman and Majda:  

Provided sufficient condition involving  the Lipschitz 

regularity of the direction of the vorticity:
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Weak Solutions for 3D Euler

•Existence of family (non-uniqueness) of 

weak solutions to the Cauchy problem of the 

3D Euler has been recently proved by 

Wiedemann (2011).

•DeLellis – Szekelyhidi showed the existence 

of a non-trivial family of weak solutions to the 

3D Euler equations with compact support in 

space and time. 



The present proof is not a traditional PDE 

proof.

It shares many ideas of the proof of the 

[Nash (1974), Kuiper (1955)] theorem of 

invariant imbeddings of surfaces. It uses the 

formalism of differential inclusions, convex 

integration and accumulation of oscillations.



Earlier results were established 

by Shnirelman and Sheffer. 



Ill-posedness of 3D Euler

Theorem (Bardos-Titi 2010): 

(i) Let u1; u3 2 L2
loc(IR) then the shear °ow

u(x; t) = (u1(x2); 0; u3(x1 ¡ tu1(x2))

is a weak solution of the Euler equations, in the sense of distribution, in ­ = IR3.

(ii) Let u1; u3 2 L2
per(IR) then the shear °ow above is a weak solution of

the Euler equations, in the sense of distribtions. Furthermore, in this case the

energy of this solution is constant.

(iii) There exist shear °ow solutions of the above form which, for t = 0,

belong to C0;®, for some ® 2 (0; 1), and for t 6= 0, they do not belong to C0;¯

for any ¯ > ®2.



This shear flow was used earlier by 

DiPerna and Majda to show that weak limit 

of oscillatory classical solutions of Euler 

equations does not converge to a solution 

of Euler equations. 



Ruling Out  Certain Weak 

Solutions of Euler

The work of DeLellis – Szekelyhidi implies 

that there are non-unique weak solutions 

of Euler even with very smooth initial data 

(for example u0 = 0).

Question: Is there a natural criterion for 

ruling out certain weak solutions of Euler? 



Ruling Out Criterion

In the absence of physical boundaries

A weak solution of Euler which cannot be 

achieved as a limit of Navier-Stokes, as the 

viscosity tends to zero, should be ruled out. 



Vanishing Viscosity Solutions

[Bardos, Titi, Wiedemann, 2012] 

For initial data of the form 

there are infinitely many weak solutions of 

Euler equations.  

The shear flow solution 

is the vanishing viscosity limit solution.   

(u1(x2);0; u3(x1))

(u1(x2);0; u3(x1¡ tu1(x2)))



Two-Dimensions Euler
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Special Results of Global Existence for 

the three-dimensional Navier-Stokes

Miyakawa) & Giga (Kato, )(in  small is

 data initial  theif holdsresult  same The data.

 initialsuch  with  timeallfor  posed-well

globally  are equations Stokes-Navier

 3D Then the . enough small be Let  

Kato) and (Fujita Theorem

3

0 2
1

L

u
H



axis]- from[away 

axis-  thearoundDomain  Revolution
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• Let us move to Cylindrical coordinates

Theorem   (Ladyzhenskaya) Let 

be axi-symmetric initial data. Then the three-dimensional 

Navier-Stokes equations have globally (in time) strong solution 

corresponding to such initial data. Moreover, such strong solution

remains axi-symmetric. 



Theorem (Leiboviz,  Mahalov and E.S.T.)

Consider the three-dimensional Navier-Stokes 

equations in an infinite Pipe. Let
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(Helical symmetry). For such initial data we have 

global existence and uniqueness. Moreover, 

such a solution remains  helically symmetric.



Remarks

For axi-symmetric and helical flows the vorticity 

stretching term is nontrivial, and the velocity 

field is three-dimensional.

In the inviscid case, i.e.          , the question of 

global regularity of the three-dimensional helical

or axi-symmetrical Euler equations is still open. 

Except the invariant sub-spaces where the 

vorticity stretching term is trivial. 
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More about vorticity stretching

In the two-and-half dimensional Navier-Stokes

and Euler equations (u,v,w)(x,y).

(u,v) satisfy the 2D Navier-Stokes/Euler 

equations, and w is a passive scalar

The vorticity stretching term is non-trivial. 

(
@w

@y
;¡@w

@x
; 0) ¢ (@u

@x
;
@v

@y
; 0) =

@w

@y

@u

@x
¡ @w

@x

@v

@y



Does 2D Flow Remain 2D?

[Bardos, Lopes-Filho,Nussenzveig-Lopes, Niu, Titi (2012)]

• Let u0 be a function of on (x,y), then the Leray-Hopf weak 

solution of the 3D Navier-Stokes remains a function of only 

(x,y). 

• Similar result holds for the Navier-Stokes equations with 

axi-symmetric initial data, or helical initial data.

• Let u0 be a function of (x,y), then the weak solution of the 3D 

Euler might become a function of (x,y,z).

• Also, if the initial data is axi-symmetric or helical symmetric, 

the weak solutions of Euler might break the symmetry. 



• Theorem [Cannone, Meyer & Planchon] 

[Bondarevsky] 1996

Let M be given, as large as we want. Then there exists 

K(M) such that for every initial data of the form 
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satisfying                         the three-dimensional Navier-Stokes 

equations have global existence of strong solutions.

[VERY OSCILLATORY]

Remark Such initial data satisfies 

So, this is a particular case of Kato’s Theorem.
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Raugel and Sell (Thin Domains)

Global Existence (in time) of strong solutions 

for the 3D Navier-Stokes equations  in thin 

domains, for large (depending on the 

thinness of the domain), initial data. 

I. Kukavica and M. Ziane, made a significant 

improvement in the size of the data for 

which the above result holds, and 

investigated other physical configurations.



Stability of Strong Solutions

• [Ponce, Sideris, Racke & Titi, CMP 1994] 

The set of globally regular solutions of the 

3D Navier-Stokes is stable under small 

perturbations in the initial data and forcing.  



The Effect of Rotation
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•Embid and Majda
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●If           is decreasing function on some subinterval 
of R then the solution of the above equation 

develops a singularity (Shock) in finite time.

The solution is given implicitly by the relation:
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An Illustrative  Example



The Effect of the Rotation
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Fast Rotation = Averaging
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The above complex system is 

equivalent to 2D Rotating Burgers:



How can the computer help in 

solving the3D Navier-Stokes 

equations and turbulent flows?



Reynolds numbers = Ratio of 

the Intensity of the Nonlinear      

Effect  to the Intensity of the 

Viscous Linear Effect.



Weather Prediction

In the atmosphere the Reynolds 
number is of the order of 7x108

In this case the number of 
equations  needed to be 
solved at each time step is of 
the order of         , i.e.  1018.



Flow Around the Car

For the around a moving car the 
Reynolds number is of the order of 
105

In this case the number of 
equations is of the order of
1010



How long does it take to 

compute the flow around the 

car for a short time?



5 years? 



50 years? 



500 years? 



5000 years!!!



Large Scale Oceanic  

Circulations 







Rayleigh Bénard Convection / 

Boussinesq Approximation

• Conservation of Momentum

• Incompressibility

• Heat Transport and Diffusion
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Bénard Convection/Boussinesq 

Approximation
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Typical Scales in the Ocean

• horizontal distance  

• horizontal velocity 

• depth  

• Coriolis parameter   

• gravity 

• density  

m/s 10 ~ U -1

1/s 10 ~ f 4 -

m 10 ~ L 6

m 10 ~ H 3

2m/s 10 ~ g
33

0 kg/m 10 ~ 



Calculating the typical values

• Typical vertical 

velocity

• Typical pressure

• Typical time scale

 m/s 10 ~  UH/LW 4 -

Pa 10 ~ H g    P 7

0

s 10 ~ L/U  7



Scale Analysis of Vertical Motion –

The Ideal Case
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Hydrostatic Balance
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The Primitive Equations of Large 

Scale Oceanic and Atmospheric 

Dynamics
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● Introduced by Richardson  (1922)

For Weather Prediction

● J.L. Lions,  R. Temam,  S. Wang (1992) 

Gave Some Asymptotic Derivation of the 

Model. 



Previous Results

• J.L. Lions, Temam, S. Wang (1992), and Temam, Ziane (2003)

The global existence of the weak solutions (No Uniqueness).

• Guillen-Gonzalez, Masmoudi, Rodriquez-Bellido  (2001), and  Temam, 

Ziane (2003)

The short time existence of the strong solution

• Temam, Ziane  (2003)

Global Existence of Strong Solution for the 2-D case.

• C. Hu,  Temam, Ziane (2003)

Global Regularity for Restricted (Large) Initial Data in Thin Domains.



Results

• C. Cao and E.S.T. [Annals of Mathematics
(2007)]. [arXiv March 1, 2005].

* the global existence of the weak solutions

(Galerkin method/announced)

* the global existence and uniqueness 

of the strong solutions.

* existence of the global attractor 
(announced). 

* See also,  [Ning Ju (2007)] for the 
existence of global attractor. 



The Primitive Equations of Large 

Scale Oceanic and Atmospheric 

Dynamics
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A different formulation of the PE 

),(),,(),,(~

0,),,(),(

),,(),(),,(

),,(),,(

0
1

yxvzyxvzyxv

vdyxvyxv

dyxTgyxpzyxp

dyxvzyxw

HHH

HH
h

HhH

z

h
s

z

h
HH





























The Barotropic Mode – The 

Averaged Part of the Horizontal 

Velocity
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The Baroclinic Mode –The 

Fluctuation Part of the Horizontal 

Velocity
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The IDEA – Focus on Burgers 

Equation
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We have

A maximum principle for

Global Regularity for 1D, 2D and 3D Burgers Equation.



The  Pressure Term!!

• Is the major difference between Burgers 

and the Navier-Stokes equations.

• What about in our system?



The Averaged Equation is “like” the 

2D Navier-Stokes. 
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The Fluctuation Equation is “like” 

3D Burgers Equations – Has No 

Pressure Term!!
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A-priori Estimates
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One of the Main Estimates Used
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By Ladyzhenskaya inequality  we usually have:

But here instead we have [Cao-Titi]:



Using this observation about the pressure 

that it is effectively a function of two 

variables:

I. Kukavica and M. Ziane, (Nonlinearity 2007) 

obtained similar results for the case of 

Dirichlet boundary conditions, on top and 

bottom, and periodic boundary conditions in 

the horizontal direction.



Back to the 3D Navier-Stokes 

Equations
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New Criterion for Global Regularity 

of the 3D Navier-Stokes Equations

.p
This is different than the result of L. Berselli and G.P. Galdi 

(2002) and of Y. Zhou  (2005) where the assumption is on
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• There are other global regularity criteria 

involving the pressure due to:

Chae  

Kukavica 

and

Struwe.

Recently this result was improved by Zhou and Pokorny 



• Sereigen and Sverak:

Global regularity if the pressure is bounded 

from below.



Most Recent Criterion for Global Regularity

Theorem (Cao and T.) [Arch. Rational Mech. Anal. 2011] 

The three-dimensional Navier-Stokes equations has a unique storng solution

on the interval [0; T ] if and only if for some j; k 2 f1; 2; 3g
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The Primitive Equations for 

Stratified Fluid Flows
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Global Regularity of the Primitive Equations 

with vertical Diffusion Turbulence Mixing
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Cao-Titi. [Comm. Math. Physics 2011]



Global Regularity of the Primitive Equations 

with Vertical Diffusion  Turbulence Mixing

Cao-Li-Titi [ARMA 2014]

• Improvement of the results with Vertical 

Diffusion Turbulence Mixing



Global Regularity of the Primitive Equations 

with Horizontal Diffusion Mixing
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Cao-Li-Titi [JDE 2014]

• Global Regularity of PE with Horizontal Diffusion 

Turbulence Mixing



Global Regularity of the Primitive Equations 

with Horizontal Viscosity & Diffusion Mixing
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Cao-Li-Titi [2014]

• Global Regularity of PE with Horizontal Viscosity and 

Horizontal Diffusion



Generalization of the 

Brezis-Gallouet inequality

[Cao-Li-Titi-2014]



Gronwall’s Inequality for Systems



Blowup of Inviscid Primitive Equations

ut + uux + vuy + wuz + px = 0;

vt + uvx + vvy + wvz + py = 0;

pz + T = 0;

Tt + uTx + vTy + wTz = ·H¢HT + ·3Tzz;

ux + vy + wz = 0:

­ = f(x; y; z) : 0 · z · H; (x; y) 2 IR2g

In the horizontal channel 

Cao-Ibrahim-Nakanishi-Titi (2012) [Comm. Math Phys. 

2013], see also Wong (2012)]



Reduced Inviscid Primitive Equations

We take               and              .  This implies that

and            .  This yields the reduced 

2D system

in the strip

v0 = 0 T0 = 0

v ´ 0 T ´ 0

ut + uux +wuz + px = 0;

pz = 0;

ux + wz = 0:

M = f(x; z) : 0 · z · H ;x 2 IRg:



Boundary Conditions and the Pressure

wjz=H = wjz=0 = 0

u, p and w are periodic in the x-direction, with 

period L.

u and p are odd functions of x, and w is an 

even function.

px(x; t) =
¡2
H

Z H

0

u(x; z; t)ux(x; z; t) dz



The Reduced System

uxt + (uux)x +wxuz +wuxz ¡
2

H

Z H

0

(uux)x dz = 0

ux+wz = 0

Since u is an odd function and and w is and even 

with respect to x we have:

u(0; z; t) = wx(0; z; t) = 0



The Reduced Equation at x=0

Denote by                                  then 

Which blows up in finite time. [Childress-

Ierley-Spiegel-Young, 1989]

W(z; t) = w(0; z; t)

Wtz ¡ (Wz)
2 +WWzz +

2
H

RH
0
(Wz)

2 dz = 0



Self-similar Blowup Solution

W(z; t) =
'(z)

1¡t ; with'(0) = '(H) = 0

'0 ¡ ('0)2 +''00 + 2
H

RH
0
('0(z))2dz = 0

Then

Which has a non-trivial solutions.




