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Introduction

Derived symplectic geometry studies symplectic and shifted
symplectic structures on (derived) stacks.

e Examples: pt/G, T*[n]X, character stacks of compact
manifolds, ...

@ Goal: explain how Hamiltonian reduction fits into the
framework.

@ Also: quasi-Hamiltonian reduction, fusion, symplectic
implosion etc have natural interpretations.
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Hamiltonian reduction

Definition

A G-Hamiltonian space M is a symplectic manifold (M, w) with a
compatible G-action and a G-equivariant map u: M — g*
satisfying

darp(v) = ta(v)w
for every v € g.

Reduced space:

M//G=p"1(0)/G = (M xg pt)/G = M/G x4 6 pt/G.
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Hamiltonian reduction
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Reduced space:
M//G = p"1(0)/G = (M xg+ pt)/G = M/G x4 /6 Pt/G.

One has
T (pt/G) = g"[-1]/G,
T*[1](pt/G) = g*/G.

It is a I-shifted symplectic stack. M/G and pt/G are two
Lagrangians and Lagrangian intersection is again symplectic.
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Hamiltonian reduction

Reduced space:
M//G = p"1(0)/G = (M xg+ pt)/G = M/G x4 /6 Pt/G.

Examples:

© Let X be a G-space. Then T*X is a G-Hamiltonian space.
The reduction is

T*X//G = T*(X/G).

@ A coadjoint orbit O C g* is a G-Hamiltonian space. The
symplectic structure is given by the Kirillov—Kostant-Souriau
form.
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Derived symplectic structures
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Space = derived stack. Tx is a complex of bundles.

Definition

An n-shifted symplectic structure wx on a space X is an
isomorphism wo: Tx — T%[n] together with some closedness data.

Really: a collection of differential forms wg, ws, ... satisfying
dwy = 0,dgrwo + dw1 =0, ...

Here wyp is a degree n two-form, wy is a degree n — 1 three-form
and so on.

Remark: p-forms of degree q are similar to (p, g)-forms in the
Dolbeault complex. dqg is similar to 0 and d is similar to 0.
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Derived symplectic structures

Space = derived stack. Tx is a complex of bundles.

Definition

An n-shifted symplectic structure wx on a space X is an
isomorphism wg: Tx — T%[n] together with some closedness data.

Examples:
@ T*[n]X has a symplectic structure of degree n.
o pt/G is 2-shifted symplectic. Ty, = g[1], T;‘)t/c = g*[-1].
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Derived symplectic structures

Space = derived stack. Tx is a complex of bundles.

An n-shifted symplectic structure wx on a space X is an
isomorphism wg: Tx — T%[n] together with some closedness data.

@ One can make sense of isotropic and Lagrangian morphisms
f: L — X into an n-shifted symplectic space.

@ An isotropic structure is a homotopy f*wx ~ 0. A morphism
L — pt is Lagrangian iff L is n-shifted symplectic.

Theorem (PTVV)

An intersection of two Lagrangians L1 X x Ly in an n-shifted
symplectic space is (n — 1)-shifted symplectic.
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Hamiltonian reduction revisited
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Recall that g*/G = T*[1](pt/G) is 1-shifted symplectic.

Given a G-space M and a G-equivariant map p: M — g*, when is
w: M/G — g*/G Lagrangian?

Need a degree 0 two-form h on M/G, such that

w*wo = dh
0 =dgrh.

That is, h is a G-invariant symplectic form on M satisfying the
moment map equation.

Theorem (Calaque, S)

Lagrangians in g*/G are the same as G-Hamiltonian spaces.
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Hamiltonian reduction revisited
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Theorem (Calaque, S)

Lagrangians in g*/G are the same as G-Hamiltonian spaces.

pt/G — g*/G is also Lagrangian. Thus,
Miea = M/G Xy /6 Pt/ G

is a Lagrangian intersection, so it carries an ordinary symplectic
structure.
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Symplectic implosion
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Theorem (S)

Given a Lagrangian L — X and a Lagrangian correspondence
X < N — Y, the morphism L xx N — Y is Lagrangian.

Let B C G be a Borel subgroup and H the maximal torus.
Theorem (S)

The correspondence

is Lagrangian.

This allows one to turn G-Hamiltonian spaces into H-Hamiltonian
spaces (a sort of abelianization). This procedure coincides with
symplectic implosion of Guillemin, Jeffrey, Sjamaar.
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AKSZ formalism
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Let X be an n-shifted symplectic stack.
Theorem (PTVV)

Let M be a closed d-dimensional manifold. The stack of
locally-constant maps Map(Mpg, X) is (n — d)-shifted symplectic.

Theorem (Calaque)

Let M be a compact d-dimensional manifold. The restriction
morphism
Map(Mg, X) — Map((9M)g, X)
is Lagrangian.
Example: since pt/G is 2-shifted symplectic,

& = Map((5")5.p1/6)

is 1-shifted symplectic.
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Quasi-Hamiltonian reduction
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Let M be a G-space and iu: M — G a G-equivariant map. When
isu: M/G — % Lagrangian?
Need a degree 0 two-form on M/G, such that

wwo = dh

pwi = dgrh.

Theorem (S)

Lagrangians in % are the same as G-quasi-Hamiltonian spaces.

Quasi-Hamiltonian reduction is
Mreg = 1~ '(€)/G = M/G x g pt/G,
which is again a Lagrangian intersection, hence symplectic.
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Classical Chern-Simons theory
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Given a manifold M, the phase space of classical Chern-Simons
theory on M is Map(Mpg, pt/G), the space of G-local systems on
M. The AKSZ theorems imply that Map(—, pt/G) is a classical
topological field theory: it sends closed manifolds to symplectic
stacks and cobordisms to Lagrangian correspondences.

Example: a pair of pants gives a correspondence

9\[o)
X
9\[o)

Theorem (S)

G
G ’
produces another Lagrangian in % This coincides with fusion of
quasi-Hamiltonian spaces.

Given two Lagrangians in composition with this correspondence
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