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Let T" be any linear operator defined on, say, bounded functions with compact
support.

Let b be is a locally integrable function on R™, the "symbol”.
In particular, the space B.M.O. will play a central role.

Then we define the commutator operator [b, T] :
[b, T](f) = bT(f) — T(bf)

More generally, if k is a natural number

(k tij{nes)
TE(F) = b, -, [b, TII(F)




Commutators carlosperez@us.es

Singular Integrals



Commutators carlosperez@us.es

Singular Integrals

Main example: T is a singular integral operator.



Commutators carlosperez@us.es

Singular Integrals
Main example: T is a singular integral operator.

To fix ideas we think of the case



Commutators carlosperez@us.es

Singular Integrals
Main example: T is a singular integral operator.

To fix ideas we think of the case

Tf@) = [ K-y f@)dy



Commutators carlosperez@us.es

Singular Integrals
Main example: T is a singular integral operator.

To fix ideas we think of the case

Tf@) = [ K-y f@)dy

with kernel satisfying the usual size and smoothness condition:

x #= 0.

C
|x|n—|-oz

[0“K ()] <



Commutators carlosperez@us.es

Singular Integrals
Main example: T is a singular integral operator.

To fix ideas we think of the case

Tf@) = [ K-y f@)dy

with kernel satisfying the usual size and smoothness condition:

x #= 0.

C
|x|n—|-oz

[0“K ()] <

e But we are really interested in Calderon-Zygmund operators



Commutators carlosperez@us.es

Singular Integrals
Main example: T is a singular integral operator.

To fix ideas we think of the case

Tf@) = [ K-y f@)dy

with kernel satisfying the usual size and smoothness condition:

x #= 0.

C
|x|n—|-oz

[0“K ()] <

e But we are really interested in Calderon-Zygmund operators

Tf(@) = [ K(y)f)dy



Commutators carlosperez@us.es

Singular Integrals
Main example: T is a singular integral operator.

To fix ideas we think of the case

Tf@) = [ K-y f@)dy

with kernel satisfying the usual size and smoothness condition:

x #= 0.

C
|x|n—|-oz

[0“K ()] <

e But we are really interested in Calderon-Zygmund operators

Tf(@) = [ K(y)f)dy

(assuming the Lipschitz-Holder condition on the kernel K)



Commutators carlosperez@us.es

Singular Integrals
Main example: T is a singular integral operator.

To fix ideas we think of the case

Tf@) = [ K-y f@)dy

with kernel satisfying the usual size and smoothness condition:

x #= 0.

C
|m|n—|-oz

0K (z)] <
e But we are really interested in Calderon-Zygmund operators

Tf(@) = [ K(y)f)dy
(assuming the Lipschitz-Holder condition on the kernel K)

e Rough homogeneous singular integrals can be considered as well.
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Commutators with the Hilbert transform

In the case of the Hilbert transform

Hf(z) = R%dy
we have the simplest commutator:
b — b
b 1111 (@) = [ =0 1)y

or more generally:

f(y)dy

7)) — k
b1y = [ =)
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Why commutators?
e Factorization of the Hardy space H1(R").
o W1.P(R™) theory for (non-divergent) elliptic PDE.
Work of Chiarenza-Frasca-Longo
e Jacobian theory, compensation compactness theory
(dealing with nonlinear objects)
Work of Coifman-Lions-Meyer-Semmes
T. lwaniec

S. Mdller.

e Operator theory: Hankel operator, Bergman spaces.
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The 70’s: the CRW classical theorem

The first question is whether this is bounded on L?(R"™) (or else LP(R™))

Theorem (Coifman-Rochberg-Weiss (1976))
Let 1 < p < oo. Then

b, H] : LP(R) — LP(R) <= be& BMO(R)

The sufficiency is more general,

Theorem If T is any Calderdn-Zygmund operator and if b € BMO(R"™), then
forany 1 < p < oo

b, T] : LP(R") — LP(R")
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B.M.O., John-Nirenberg and Fefferman-Stein
Recall that a function b is in B.M.O. if:

Ilsaro =sup o [ 16(w) ~ bl dy < oc

Q]

In other words, the oscillation of the function is bounded.

A related operator is the sharp maximal function of C. Fefferman-Stein:

MH() @) = sup o [ 17 ~ foldy

The main estimate:

C. Fefferman-Stein( ~ 1973)
Let O <p<oocandlet w € Ax. Then

MO oy < NMZ (P o0y
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Back to the CRW theorem: comments about proofs
e First proof: by good-\ combined with hard work.

e Second proof: (itis in the same paper) by “conjugation” where appears
the relevance of the theory of weights
The proof holds for any linear operator T' satisfying a good weighted estimate
if z Is any complex number define

T,(f) = e?PT (e 2Pf)

Then, a computation gives
d

b, 7)) = T2 om0 =
%

1 T.(f)

—27Ti/|z|=r 22 dz 7 >0

by the Cauchy integral theorem.
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Proof 2

Now, by Minkowski’s inequality (since p > 1!)
T < —2/ T

We know look at the norm inside ||T.(f)||z»:

1T oy = 1T bRz,

This is a weighted norm inequality

We need uniform bounds on z.

classical relationship between BMO and the A, class of weights:
If b€ BMO thereis an small positive number ¢ s.t.

e e Ay |t <6



Commutators carlosperez@us.es

The A, class

Recall the definition of A,



Commutators carlosperez@us.es

The A, class

Recall the definition of A,

1 1 1 \PE
[w]Ap Sup <|Q|/ w dx ) <@/pr d:c) < o0



Commutators carlosperez@us.es

The A, class

Recall the definition of A,

1 1 1 \PE
[w]Ap Sup <|Q|/ w dx ) <@/pr d:v) < o0

e The definition of Axo:



Commutators carlosperez@us.es

The A, class

Recall the definition of A,

1 1 1 \PE
[w]Ap Sup <|Q|/ w dx ) <@/pr d:v) < o0

e The definition of Axo:



Commutators carlosperez@us.es

The A, class

Recall the definition of A,

1 1 1 \PE
[w]Ap Sup <|Q|/ w dx > <@/pr d:v) < o0

e The definition of Axo:

e The quantitave A, constant



Commutators carlosperez@us.es

The A, class

Recall the definition of A,

1 1 1 \PE
[w]Ap Sup <|Q|/ w dx ) <@/pr d:v) < o0

e The definition of Axo:

Aco = Up>14p
e The quantitave A, constant

= sup

.. Q a(Q)

/ M(oxg) dx



Commutators carlosperez@us.es

The A, class

Recall the definition of A,

1 1 1 \PE
[w]Ap Sup <|Q|/ w dx > (@/pr d:v) < o0

e The definition of Axo:

Aco = Up>14p
e The quantitave A, constant

= Sup

.. Q G(Q)

/ M(oxg) dx

The Fujii-Wilson constant.
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Muckenhoupt and Buckley’s theorem.

e Recall the Hardy-Littlewood maximal function

M) = sup o [ 17l dy

Theorem Let 1 < p < oo, then

M : LP(w) — LP(w) <= we A

Furthermore, %

1Ml Low) < epon [w]’) A

with sharp exponent p%l which cannot be replaced by ﬁ — ¢

e There is no need to find an explicit example, the sharpness of the exponent

is due to the following fact:
1

M N ——— — 1

Joint work with T. Luque and E. Rela.
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This result recovers the CRW commutator LP theorem with a bonus:
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e Third proof: (due to J. L. Stromberg)

Works only for Calderon-Zygmund operators T

based on the following pointwise estimate:
M#([6, T11)(2) < c|blparo (Mrg(£)(2) + Mr(TH) (@) 70> 1.

This result recovers the CRW commutator LP theorem with a bonus:

Letp > 1andw € Ap. Thenif b € BMO

b, T] : LP(w) — LP(w)
Fefferman-Stein inequality must be used
1M oy < <17 D e

together with Muckenhoupt's theorem and the R.H.l.'s property of A, weights.
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The 90’s: End-point estimates and related results
Two main ideas | want to convey throughout the talk:
e These commutators are NOT Calderén-Zygmund Operators
e the commutators become more singular as k increases.

e Hardy endpoint?
- The first result indicating that these commutators are different from the stan-
dard singular integrals is due M. Paluszynski in his PhD thesis, 1992:

Recall that any singular integral operator 1" satisfies

T : H'(R™) — LY(R™)
Paluszynski proved that the corresponding result

b, H] : HY(R™) — LY(R™)

is false when b is a BM O function.
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e weak type?

- A natural question within the Calderdn-Zygmund is whether these commuta-
tors satisfy a weak type (1, 1) inequality, namely

[b,T] : LV (R") —» L1(R™)

- In general this is NOT TRUE
- What is the right endpoint?

Let b € BMO, there exists ¢ > 0 such that

)dx A>0

{y €R™: |[b, T1f(y)| > A} < c/ncbdf(;)i

where ®(t) = t(1 + logtt).

Can interpolate with these kind of estimates.
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It was shown in these papers that these commutators are not the "controlled
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instead: M2=MoM is the right one.

e We observe that M? is not of weak type one and is of LlogL type
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L weRr b, TIF W) > 8}
<?>

sup
t>0 P
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Relationship with 172

e A second question is what is the right maximal operator “controlling” these
commutators.

It was shown in these papers that these commutators are not the "controlled
by the Hardy-Littlewood maximal M

instead: M2=MoM is the right one.

e We observe that M? is not of weak type one and is of LlogL type

Theorem
1
sup e R™: ||[b,T >t
ur ¢(%)|{y [[b, TN f(y)| > t}
< csup 1 {y eR™: M2 (y) >t}
t>0 P(

where as above ®(t) = t(1 + logt t). In fact is false for () = .
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It is unfortunate that the “conjugation” method above DOES NOT WORK to
prove these estimates.

The proof is based on the following pointwise inequality:

Theorem If ¢ > 0O, then there is a constant ¢ such that

M7, ([6,T]) < e(M(Tf) + M>(f))

Let O < p < ooandw € Ao, then there is a constant ¢ such that

100, IO oy < €12

C.P. 1995

Is sharp, M?2 cannot be replaced by M.
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The 00’s

Joint work with Gladis Pradolini ~ 2000.

We found a direct proof by means of a variant of the Calderon-Zygmund
Operators type decomposition.

We can even put general weights

Theorem
There exists a positive constant ¢ such that

|f (@)
A

w{z €R": [[b,T1f(2)| > A}) See [ o

where ®(¢) = (1 + logT ¢t).

) ML(Iog L)1+6(w)($)d$

compare with

1T 1y S = [ @M 1y (0) (@) da
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The decade 2010: Commutators and Quadratic estimates

Joint work with D. Chung and C. Pereyra.

Theorem Let T be any LINEAR operator such that for some a > 0

1T 20y < cwlh,  w e Ao

then

| [, T]||L2(w) < c||bl|Bymo [’w]jléx2 « w € As, b€ BMO

The method of proof, by sharpening the conjugation method 7,
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The A, theory: the extrapolation theorem

Corollary If T"is linear and satisfies ||7'[| ;2(,,) < ¢ [w]%2 w € Ap, then

(1+«) max{l,ﬁ}

116 TY| Lo (w) < ep,7 lIbllBArO (W] 4, 1<p<oo
In particular, we have the following consequence
Corollary
If T is a Calderon-Zygmund Operators operator, then
2max{l,-27}
116 T]ll o (w) < ep,7 lIbllBArO (W] 4, l1<p<oo

and the exponent is sharp.

e There is no need to find an explicit example, the sharpness of the exponent
is due to the following fact:
1

p—1
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Assume that T is any Calderén-Zygmund Operators operator.

Theorem (C.P. & T. Hytonen)

171 2y < e lwl 4 (bl an, + (w14,

1/2

As a consequence we have
1T 20y < er [w]a,

For the commutator we have the following result

Theorem (C.P. & T. Hytonen)

106, Tl 120y < € lw) 7 (Tl ag + [w™a,)

3/2

16]| BArO
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Further comments

e As before we can recover the previous result:

116, T 20y < € W], |18l Baro

e For higher order commutators we have,

k+1/2

HTé{:HLQ(w) <c [’w]}L‘/Q2 <[w]Aoo + [U]Aoo) ”bH%MO

e Thereis an Aq type theory that | will skip.
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An important key fact: the sharp RHI property

If w € Ax satisfies a Reverse Holder Inequality: for some r,¢ > 1

1
1 - r c
<@/Qw d:c) S@/deaf:

Theorem

Let w € Ax. Then,

1 14—\ 1+ ——
(—/ w Tn[m]Aoo) Tn[w]Aoo < —/ w
Ql/Q Q)

linearity in [w] 4 is best possible.

Joint work with T. Hytonen.
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1T fll Lo (w) < epw IM fll Locw)

where T* is the maximal singular integral operator

T*f(x) = sup [Tz f(z)].
e>0
The proof by R. Coifman and C. Fefferman is based on the good-)\ estimate:

w({z e R" : T f(x) > 2\, Mf(z) <er}) < ce5w({w eR": T*f(x) > \}),

for A > 0 and ¢ small enough.

The key point is to show that for appropriate (Whitney) cubes @ and for f such
that supp f C Q then

1

|Q|\{a: EQ:T f(z) > 2\ Mf(z) < eA}| < ce.
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There is a very nice improvement by S. Buckley (1993) (based on previous
work by R. Hunt, L. Carleson):

ﬁ‘{x € QT f(z) > 27\ Mf(z) < A} < e~/

In 2002, G. A. Karagulyan improved this result:

Theorem (G. A. Karagulyan, 2002) For any cube @ and any f supported
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Good-Lambda with an extra exponential decay.

There is a very nice improvement by S. Buckley (1993) (based on previous
work by R. Hunt, L. Carleson):

ﬁ‘{x € QT f(z) > 27\ Mf(z) < A} < e~/

In 2002, G. A. Karagulyan improved this result:

Theorem (G. A. Karagulyan, 2002) For any cube @ and any f supported
on

e This can be seen as an improvement of T : L2°(R"™) — BMO(R")
e Question: what about other operators?

e In particular for commutators.

e The proof by Karagulyan is not so clear.
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The subexponential decay estimate

Theorem ( C. Ortiz, C.P. and E. Rela) Suppose that ||b||gr;0 = 1, then for
any cube @ and for any f supported on @ there are constants c such that

1

1] {x € Q: 16, T] /()] >t} Sce_\/a t >0

M2 f ()

e This shows that [b,T] : L3°(R™) — BMO(R™) cannot be true but that

[b,T] : LL(R™) — BMO7 /(R™)

does hold.
e For higher order commutators

Theorem (higher order case) Idem as above

S
Q|

) f ()
MFE+Lf(x)

1/(k+1
6_(Ct) /(k+1)

t>0

{x e : >t} <c
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Sketch of the proof I:
e Rubio de Francia’s algorithm: Building A; weights with good properties

Given h € L"(R"™), h > 0, we define

© 1 Mkp
ROV= 2 Sk,
k=0 r(R")

1) h < R(h)

2) | RCR) | Lrrry < 2[|R|| Lr(re)

3) [R(W)] 4, < 2| M| Lrany ~ 7/

e Factorization: [wlwé_p]Ap < [wl]Al[wQ]i_ll

I . ) n
e Coifman-Rochberg: [(Mp)°la; < 1755

e The sharp L1 weighted Coifman-Fefferman estimate:

/Rn |[b, T]f|wda: < CT»HbHBMO [w]%oo o sz wdx
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Sketch of the proof II:

For p > 1 to be chosen

BT @) 1
e i > | <u

p

[6, T]f
M2f

Lr(Q)
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15, 7)) 1
'{x “C i) t}‘ S

p

[6, T]f
M2f

LP(Q)

1 (1 |6, T1f],\"
~ Fp( Q M2f h) (For some||hll gy = 1)
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Sketch of the proof Il:

For p > 1 to be chosen

b, T1f ()| H 1 ||[b, T1£|
) ty < —
'{x = M2f@)| | T | M2y LP(Q)
1 b T]f
T ( Q |[Mgf » ) (for somellhlly gy = 1)

1 |[b, T £| b [b, T f
<3 (4 ) = (4 S0

2 p
(a [wli /Q M—fR(m) (wp = R(h)(MZf)")

w ]y, p [f]
~ (/QR(h)> <—8Q
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Then for and p > 1 to be chosen we have obtained
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Sketch of the proof lli:

[R(h)(M2£) "1 4, = [R(R)(M2F) 2] 4,

< [R(W] 4, [(M2 )23 S

Then for and p > 1 to be chosen we have obtained

[ T
IQIH € QT 2r@)] >t}

Then choosing (?)% = 1 namely p ~ v/ we have

t e’

< ce_\/g

o BTl
{ €9 MZi(o) >t}

al
Q

concluding the proof.

. ((cp)2>p
=\
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