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Barcelona November 7, 2014



Commutators carlosperez@us.es

1



Commutators carlosperez@us.es

This lecture is dedicated to the memory of my PhD advisor

1



Commutators carlosperez@us.es

This lecture is dedicated to the memory of my PhD advisor

Björn Jawerth

November 25,1952 - September 2, 2013

1



Commutators carlosperez@us.es

• main results are in collaboration with

2



Commutators carlosperez@us.es

• main results are in collaboration with

Carmen Ortiz and Ezequiel Rela

2



Commutators carlosperez@us.es

• main results are in collaboration with

Carmen Ortiz and Ezequiel Rela

• and related results with

2



Commutators carlosperez@us.es

• main results are in collaboration with

Carmen Ortiz and Ezequiel Rela

• and related results with

Daewon Chung and Cristina Pereyra

2



Commutators carlosperez@us.es

• main results are in collaboration with

Carmen Ortiz and Ezequiel Rela

• and related results with

Daewon Chung and Cristina Pereyra

Tuomas Hytönen

2



Commutators carlosperez@us.es

• main results are in collaboration with

Carmen Ortiz and Ezequiel Rela

• and related results with

Daewon Chung and Cristina Pereyra

Tuomas Hytönen

Teresa Luque and Ezequiel Rela

2



Commutators carlosperez@us.es

Commutators of Coifman-Rochberg-Weiss

3



Commutators carlosperez@us.es

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact
support.

3



Commutators carlosperez@us.es

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact
support.

Let b be is a locally integrable function on Rn, the ”symbol”.

3



Commutators carlosperez@us.es

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact
support.

Let b be is a locally integrable function on Rn, the ”symbol”.

In particular, the space B.M.O. will play a central role.

3



Commutators carlosperez@us.es

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact
support.

Let b be is a locally integrable function on Rn, the ”symbol”.

In particular, the space B.M.O. will play a central role.

Then we define the commutator operator [b, T ] :

3



Commutators carlosperez@us.es

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact
support.

Let b be is a locally integrable function on Rn, the ”symbol”.

In particular, the space B.M.O. will play a central role.

Then we define the commutator operator [b, T ] :

[b,T](f) = bT(f)−T(bf)

3



Commutators carlosperez@us.es

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact
support.

Let b be is a locally integrable function on Rn, the ”symbol”.

In particular, the space B.M.O. will play a central role.

Then we define the commutator operator [b, T ] :

[b,T](f) = bT(f)−T(bf)

More generally, if k is a natural number

3



Commutators carlosperez@us.es

Commutators of Coifman-Rochberg-Weiss

Let T be any linear operator defined on, say, bounded functions with compact
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Let b be is a locally integrable function on Rn, the ”symbol”.

In particular, the space B.M.O. will play a central role.

Then we define the commutator operator [b, T ] :

[b,T](f) = bT(f)−T(bf)

More generally, if k is a natural number

Tk
b(f) =

(k times)︷ ︸︸ ︷
[b, ··, [b, T ]](f)
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K(x− y) f(y) dy

with kernel satisfying the usual size and smoothness condition:

|∂αK(x)| ≤
c

|x|n+α
x 6= 0.

• But we are really interested in Calderón-Zygmund operators

Tf(x) =
∫
Rn
K(x, y) f(y) dy

(assuming the Lipschitz-Hölder condition on the kernel K)

• Rough homogeneous singular integrals can be considered as well.
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∫
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x− y
dy

we have the simplest commutator:

[b,H]f(x) =
∫
R

b(x)− b(y)

x− y
f(y) dy

or more generally:

Hk
b f(x) =

∫
R

(b(x)− b(y))k

x− y
f(y) dy
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• Factorization of the Hardy space H1(Rn).

•W1,p(Rn) theory for (non-divergent) elliptic PDE.

Work of Chiarenza-Frasca-Longo

• Jacobian theory, compensation compactness theory
(dealing with nonlinear objects)

Work of Coifman-Lions-Meyer-Semmes
T. Iwaniec
S. Müller.

• Operator theory: Hankel operator, Bergman spaces.
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The first question is whether this is bounded on L2(Rn) (or else Lp(Rn))

Theorem (Coifman-Rochberg-Weiss (1976))
Let 1 < p <∞. Then

[b,H] : Lp(R) −→ Lp(R) ⇐⇒ b ∈ BMO(R)

The sufficiency is more general,

Theorem If T is any Calderón-Zygmund operator and if b ∈ BMO(Rn), then
for any 1 < p <∞

[b, T ] : Lp(Rn) −→ Lp(Rn)
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in other words, the oscillation of the function is bounded.

A related operator is the sharp maximal function of C. Fefferman-Stein:

M#(f)(x) = sup
Q3x

1

|Q|

∫
Q
|f(y)− fQ| dy

The main estimate:

C. Fefferman-Stein( ≈ 1973)
Let 0 < p <∞ and let w ∈ A∞. Then

‖M(f)‖
Lp(w)

≤ c ‖M#(f)‖
Lp(w)
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• First proof: by good-λ combined with hard work.

• Second proof: (it is in the same paper) by “conjugation” where appears
the relevance of the theory of weights

The proof holds for any linear operator T satisfying a good weighted estimate

if z is any complex number define

Tz(f) = ezbT(e−zbf)

Then, a computation gives

[b, T ](f) =
d

dz
Tz(f)|z=0 =

=
1

2πi

∫
|z|=r

Tz(f)

z2
dz r > 0

by the Cauchy integral theorem.
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This is a weighted norm inequality

We need uniform bounds on z.

classical relationship between BMO and the Ap class of weights:

If b ∈ BMO there is an small positive number δ s.t.

etb ∈ Ap, |t| < δ
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[w]
Ap

= sup
Q

(
1

|Q|

∫
Q
w dx

) (
1

|Q|

∫
Q
w
−1
p−1 dx

)p−1

<∞

• The definition of A∞:

A∞ = ∪p≥1Ap

• The quantitave A∞ constant

[σ]
A∞

= sup
Q

1

σ(Q)

∫
Q
M(σχQ) dx

The Fujii-Wilson constant.
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p−1 − ε

• There is no need to find an explicit example, the sharpness of the exponent
is due to the following fact:

‖M‖
Lp(Rn)

≈
1

p− 1
p→ 1

Joint work with T. Luque and E. Rela.
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Works only for Calderón-Zygmund operators T :

based on the following pointwise estimate:

M#([b, T ]f)(x) ≤ c ‖b‖BMO

(
Mrq(f)(x) +Mr(Tf)(x)

)
r, q > 1.

This result recovers the CRW commutator Lp theorem with a bonus:

Let p > 1 and w ∈ Ap. Then if b ∈ BMO

[b, T ] : Lp(w)→ Lp(w)

Fefferman-Stein inequality must be used

‖M(f)‖
Lp(w)

≤ c ‖M#(f)‖
Lp(w)

13



Commutators carlosperez@us.es

Third proof: the case of the Calderón-Zygmund operators

• Third proof: (due to J. L. Strömberg)
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Let p > 1 and w ∈ Ap. Then if b ∈ BMO

[b, T ] : Lp(w)→ Lp(w)

Fefferman-Stein inequality must be used

‖M(f)‖
Lp(w)

≤ c ‖M#(f)‖
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• the commutators become more singular as k increases.

• Hardy endpoint?
· The first result indicating that these commutators are different from the stan-
dard singular integrals is due M. Paluszyński in his PhD thesis, 1992:
Recall that any singular integral operator T satisfies

T : H1(Rn)→ L1(Rn)

Paluszyński proved that the corresponding result

[b,H] : H1(Rn)→ L1(Rn)

is false when b is a BMO function.
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∫
Rn

Φ(
|f(x)|
λ

)dx λ > 0

where Φ(t) = t(1 + log+ t).

Can interpolate with these kind of estimates.
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≤ c sup
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1

Φ(1
t )
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where as above Φ(t) = t(1 + log+ t). In fact is false for Φ(t) = t.
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Is sharp, M2 cannot be replaced by M .
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Theorem Let T be any LINEAR operator such that for some α > 0

‖T‖L2(w) ≤ c [w]αA2
w ∈ A2

then

‖[b, T ]‖L2(w) ≤ c ‖b‖BMO [w]1+α
A2

w ∈ A2, b ∈ BMO

The method of proof, by sharpening the conjugation method Tz
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p→ 1
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• For higher order commutators we have,

‖T kb ‖L2(w) ≤ c [w]
1/2
A2

(
[w]A∞ + [σ]A∞
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‖b‖kBMO.
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Further comments

• As before we can recover the previous result:

‖[b, T ]‖L2(w) ≤ c [w]2A2
‖b‖BMO

• For higher order commutators we have,

‖T kb ‖L2(w) ≤ c [w]
1/2
A2

(
[w]A∞ + [σ]A∞

)k+1/2
‖b‖kBMO.

• There is an A1 type theory that I will skip.
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r
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|Q|
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Q
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Theorem

Let w ∈ A∞. Then,

(
1

|Q|

∫
Q
w

1+ 1
τn[w]A∞

) 1
1+ 1

τn[w]A∞ ≤
2

|Q|

∫
Q
w
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(
1
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∫
Q
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)1
r

≤
c

|Q|

∫
Q
w dx

Theorem

Let w ∈ A∞. Then,

(
1

|Q|

∫
Q
w

1+ 1
τn[w]A∞

) 1
1+ 1

τn[w]A∞ ≤
2

|Q|

∫
Q
w

linearity in [w]A∞ is best possible.

Joint work with T. Hytönen.
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w({x ∈ Rn : T ∗f(x) > 2λ,Mf(x) ≤ ελ}) ≤ c εδw({x ∈ Rn : T ∗f(x) > λ}),

for λ > 0 and ε small enough.

The key point is to show that for appropriate (Whitney) cubes Q and for f such
that supp f ⊂ Q then

1

|Q|
|{x ∈ Q : T ∗f(x) > 2λ,Mf(x) ≤ ελ}| ≤ c ε.
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work by R. Hunt, L. Carleson):

1

|Q|
|{x ∈ Q : T ∗f(x) > 2λ,Mf(x) ≤ ελ}| ≤ c e−c/ε

In 2002, G. A. Karagulyan improved this result:

Theorem (G. A. Karagulyan, 2002) For any cube Q and any f supported
on Q

1

|Q|
|{x ∈ Q :

T ∗f(x)

Mf(x)
> t}| ≤ c e−ct t > 0

• This can be seen as an improvement of T : L∞c (Rn)→ BMO(Rn)

• Question: what about other operators?
• In particular for commutators.
• The proof by Karagulyan is not so clear.
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|Q|
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• This shows that [b, T ] : L∞c (Rn)→ BMO(Rn) cannot be true but that

[b, T ] : L∞c (Rn)→ BMO1/2(Rn)

does hold.
• For higher order commutators

Theorem (higher order case) Idem as above

1

|Q|

∣∣∣∣∣{x ∈ Q :
|T kb f(x)|
Mk+1f(x)

> t}
∣∣∣∣∣ ≤ c e−(ct)1/(k+1)

t > 0
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3) [R(h)]A1
≤ 2‖M‖Lr(Rn) ≈ r′

• Factorization: [w1w
1−p
2 ]Ap ≤ [w1]A1

[w2]p−1
A1

• Coifman-Rochberg: [(Mµ)δ]A1
≤ cn

1−δ .

• The sharp L1 weighted Coifman-Fefferman estimate:∫
Rn
|[b, T ]f |wdx ≤ cT,‖b‖BMO

[w]2A∞

∫
Rn
M2f wdx
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Sketch of the proof III:
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