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Introduction
The study of sets of finite perimeter, going back to R.Caccioppoli in the ’30
and to E.De Giorgi and H.Federer in the ’50, marks the beginning of modern
Geometric Measure Theory.

Sets of finite perimeter play an important role in the theory of minimal surfaces,
capillarity problems, phase transitions, optimal partitions, etc. It is a class
of sets sufficiently large to have compactness/completeness properties w.r.t.
the L1

loc convergence (i.e. local convergence in measure of the characteristic
functions χE), sufficiently small to have good structural properties (density,
isoperimetric properties, rectifiability of the measure-theoretic boundary, etc.).

In my talk I will review old and new characterizations of this class of sets,
covering in particular two recent developments:

• a characterization of this class of sets in metric measure spaces (X, d,m)
(joint work with S.Di Marino).

• a new and somehow unexpected characterization of perimeter and sets of
finite perimeter in Euclidean spaces (joint work with H.Brezis, J.Bourgain,
A.Figalli).
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Sets of finite perimeter
We begin with a definition in the spirit of the theory of distributions, namely
requiring the existence of the distributional derivative DχE of the characteristic
function χE : Rn → {0, 1} of E.
Definition. (Caccioppoli, De Giorgi) Let E ⊂ Rn be a Borel set. We say that
E has finite perimeter in Rn if there exists a vector-valued measure

DχE =
(
D1χE, . . . ,DnχE)

with finite total variation in Rn, satisfying∫
E

∂φ

∂xi
dx = −

∫
φ dDiχE ∀φ ∈ C1

c(Rn), i = 1, . . . , n.

An analogous definition can be given for BV functions, not necessarily
characteristic functions, but we will mostly deal with sets. We will also use
the traditional notation

P(E) = |DχE|(Rn), P(E,A) = |DχE|(A) A ∈ B(Rn).
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Definitions by approximation

In the spirit of the H = W identity for Sobolev spaces, we can also characterize
sets of finite perimeter by approximation:

∃Eh smooth, Eh → E locally in measure, L := lim sup
h→∞

H n−1(∂Eh) <∞.

This is close to Caccioppoli’s original definition, based on polyhedral
approximation (and then the optimal L is P(E)).

Alternatively, one can approximate by smooth functions:

∃ fh ∈ C∞c (Rn), fh → χE in L1
loc(Rn), L := lim sup

h→∞

∫
Rn
|∇fh| dx <∞

(and then the optimal L is P(E)).
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Sets of finite perimeter in metric measure spaces
On a metric measure space (X, d,m) there is no natural notion of smooth set,
but one can use Lipschitz functions as replacements of smooth functions.

Definition. E ⊂ X Borel has finite perimeter if there exist fh : X → R locally
Lipschitz, satisfying

lim
h→∞

fh = χE in L1(X) and lim sup
h→∞

∫
X
|∇fh| dm <∞

(here |∇f | is the so-called local Lipschitz constant).

One can then localize this construction, defining

P(E,A) = inf
{

lim inf
h→∞

∫
A
|∇fh| dm : fh ∈ Liploc(A), lim

h→∞
fh = χE in L1(A)

}
for A ⊂ X open.

Theorem. (Miranda, A-Di Marino). The set function A 7→ P(E,A) is the
restriction to open sets of a Borel σ-additive measure.
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Structure theorem in R and in Rn

In R the class of sets of finite perimeter can be characterized with elementary
tools. Any of these sets is L 1-equivalent to a finite union of connected subsets
of R, and

P(E) =
{

# of endpoints in R
}
.

In order to get something similar in n dimensions, we can define the essential
boundary ∂∗E as the set of points where the density is neither 0 nor 1:

∂∗E :=

{
x ∈ Rn : lim sup

r↓0
min
{L n(Br(x) ∩ E)

L n(Br(x))
,
L n(Br(x) \ E)

L n(Br(x))

}
> 0

}
.

Structure theorem. (De Giorgi-Federer) For any set E of finite perimeter
the essential boundary ∂∗E has finite H n−1-measure, is countably
H n−1-rectifiable and

P(E) = H n−1(∂∗E).

More precisely, P(E, ·) = H n−1 ∂∗E, namely

P(E,A) = H n−1(A ∩ ∂∗E) ∀A ∈ B(Rn).
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Behaviour along coordinate lines
A point of view pioneered by Beppo Levi, in connection with the Sobolev
theory, is to look at the behaviour along all coordinate lines. Let h ∈ Rn be
a coordinate vector and let us look at the 1-dimensional sections of E along
lines parallel to h:

Ey :=
{

t ∈ R : y + th ∈ E
}

y ∈ h⊥.

Then, the following result holds:

Theorem. If, for all coordinate vectors h, Ey has finite perimeter for
H n−1-a.e. y ∈ h⊥ and ∫

h⊥
P(Ey) dH n−1(y) <∞

then E has finiter perimeter, and conversely.

A similar statement holds for BV functions and the proof is not too hard, using
Fubini’s theorem and a smoothing argument.
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Federer’s characterization
On the other hand, the next criterion is specific of sets and its proof is much
more tricky:

Theorem. (Federer) E has finite perimeter whenever H n−1(∂∗E) <∞.

The proof is elementary in dimension n = 1, indeed the continuous function
f (t) =

∫ t
0 χE(s) ds is differentiable and with derivative in {0, 1} out of finitely

many points (those in ∂∗E), and one can apply the Darboux (mean value)
property of derivative to obtain that the derivative is piecewise constant.

If, for h coordinate vector, we consider again the sections

Ey :=
{

t ∈ R : y + th ∈ E
}
,

by the coarea inequality∫
h⊥

H 0((∂∗E)y
)

dH n−1 ≤H n−1(∂∗E)

we get (∂∗E)y consists of finitely many points for H n−1-a.e. y.
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Federer’s characterization

The hard part of the proof is to show that, to some extent, ∂∗Ey ⊂ (∂∗E)y for
H n−1-a.e. y.

Although a posteriori all definitions are equivalent, the difficulty in Federer’s
criterion is due to the discrete-continuum-discrete-continuum procedure.
Indeed, first to compute ∂∗E we need to pass to an infinitesimal scale,
so perform a discrete-to-continuum approximation. Then, to compute
H n−1(∂∗E) we have to to the same thing.

In the metric measure setup, Federer’s result has been extended by R.Korte,
P.Lahti and N.Shanmugalingam, assuming doubling, (1, 1)-Poincaré and the
existence of “nice” fibrations of the metric measure space, adapting a concept
introduced by Semmes.
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A general criterion in metric measure spaces
Another characterization of sets of finite perimeter (and BV functions) can
be obtained in general metric measure spaces (X, d,m) without structural
assumptions, by looking instead of ∂∗E (which a priori might be even “large”,
under no doubling assumptions), at the sections

Eγ :=
{

t ∈ [0, 1] : γ(t) ∈ E
}

of E along random curves γ ∈ Lip([0, 1]; X).

Call π ∈P(C([0, 1]; X)) a test plan if:

(a) π is concentrated on Lip([0, 1]; X) and Lip(γ) ∈ L∞
(
C([0, 1]; X);π

)
;

(b) the marginals (et)]π satisfy (et)]π � m and have densities uniformly
bounded w.r.t. m.

We denote by C(π) the smallest constant satisfying (et)]π ≤ C(π)m for all
t ∈ [0, 1].

For instance, in Rn, the collection of all “Levi" lines in a given direction,
with variable parameterization, provide the support of a test plan.
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A general criterion in metric measure spaces

Theorem. (A.-Di Marino) E ⊂ X has finite perimeter if and only if there
exists a finite Borel measure µ in X satisfying

(∗)
∫

H 0 {γ(t) : t ∈ ∂∗Eγ} dπ(γ) ≤ C(π)‖Lip(γ)‖L∞(π) µ

for all π test plan.
The smallest measure µ with this property is precisely P(E, ·).

The proof that P(E, ·) satisfies (*) is again a not too difficult Fubini-type
argument. The proof of the converse implication is much more involved
and uses ideas introduced in A-Gigli-Savaré in the context of optimal
transportation and gradient flows.
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A BMO-like characterization of the perimeter

In a recent paper, Bourgain, Brezis and Mironescu raised the question of
finding the “largest” space X of functions f : Q → R (and the weakest
seminorm) satisfying the constancy theorem, namely

f ∈ X and Z-valued =⇒ f = k L n-a.e. in Q, for some k ∈ Z.

It is easily seen that the spaces VMO(Q), W1,1(Q) and the fractional Sobolev
space W1/p,p(Q) with 1 < p < ∞ all have this property, but no inclusion
between these spaces exists. To this aim, they introduced the seminorm

[f ] := lim sup
ε↓0

[f ]ε,

where [f ]ε is defined with a suitable maximization procedure, and the space
B0 = {f : [f ] = 0}. Then, they proved that all the spaces above are contained
in B0, and that the constancy theorem holds in B0.

Luigi Ambrosio (SNS) Sets of finite perimeter Barcelona, November 2014 13 / 24



A BMO-like characterization of the perimeter

Set

[f ]ε := εn−1 sup
Gε

∑
Q∈Fε

−
∫

Q

∣∣∣∣f (x)− −
∫

Q
f
∣∣∣∣ dx,

where the supremum runs among all families Gε of disjoint closed ε-cubes
with faces parallel to the coordinate axes, with #Gε ≤ ε1−n.

It was proved in BBM that [χE] is a good right hand side for the relative
isoperimetric inequality:(

−
∫

Q1

∣∣∣∣χE(x)− −
∫

Q1

χE

∣∣∣∣n/(n−1)

dx
)(n−1)/n

≤ C(n)[χE∩Q1 ].

This strongly suggests that [χE] and P(E) should be closely related, although
we should take into account that the former quantity [f ] is always finite when
f ∈ L∞.
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A BMO-like characterization of the perimeter

For f ∈ L1
loc(Rn), define

Iε(f ) := εn−1 sup
Fε

∑
Q∈Fε

−
∫

Q

∣∣∣∣f (x)− −
∫

Q
f
∣∣∣∣ dx,

where the supremum runs among all families Fε of disjoint closed ε-cubes,
not necessarily with faces parallel to the coordinate axes, with #Fε ≤ ε1−n

(this is the isotropic variant of the quantities [f ], [f ]ε of BBM).

Theorem. (A-Brezis-Bourgain-Figalli) For any Borel set E ⊂ Rn, one has

lim
ε↓0

Iε(χE) =
1
2

min{1,P(E)}

with the convention P(E) =∞ if E has not finite perimeter.
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A BMO-like characterization of the perimeter

Since

−
∫

Q

∣∣∣∣χE(x)− −
∫

Q
χE

∣∣∣∣ dx = 2
L n(E ∩ Q)

L n(Q)

(
1− L n(E ∩ Q)

L n(Q)

)
≤ 1

2
,

we get Iε(χE) ≤ 1/2. Hence, the result should be interpreted as a treshold
phenomenon: as soon as Iε(χE) goes below the obvious treshold, from

lim
ε↓0

Iε(χE) =
1
2

min{1,P(E)}

we gain regularity, more precisely that the perimeter of E is finite, and that
P(E) ≤ 1.

The validity of the result, and the presence of the factor 1/2 are related, as we
will see, to the sharp constant for the relative isoperimetric inequality in the
cube.
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Variants

(1) If we define Jε ≥ Iε by maximizing on finite, disjoint families Fε of closed
and tilted ε-cubes, but with no constraint on their cardinality, we get from the
previous theorem

lim
ε↓0

Jε(χE) =
P(E)

2
.

Howewer, this result is weaker and much easier to prove, since it hides the
“treshold” phenomenon.

(2) Considering the original anisotropic quantities [f ]ε of BBM, we expect a
similar result, but with an isotropic notion of perimeter, a concept already well
estabilished in the literature.

(3) Using the sharp constant for the relative isoperimetric inequality in balls
and families of disjoint ε-balls, we expect a similar result to be true (but this
makes the link with BMO and VMO weaker).
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Sketch of proof: the inequality ≤
We already remarked that Iε(χE) ≤ 1/2. Hence, 2 lim supε Iε(χE) ≤
min{1,P(E)} follows by

(∗) 2 lim sup
ε↓0

Iε(χE) ≤ P(E).

In order to obtain (*) we can assume P(E) < ∞ and just notice that the
relative isoperimetric inequality in the cube (Hadwiger) gives

L n(A)(1−L n(A)) ≤ 1
4

P(A, Q̊1) for any A contained in the 1-cube Q1,

so that by scaling we get

εn−1 −
∫

Q

∣∣∣∣χE(x)−−
∫

Q
χE

∣∣∣∣ dx = 2εn−1 L n(E ∩ Q)

L n(Q)

(
1−L n(E ∩ Q)

L n(Q)

)
≤ 1

2
P(E, Q̊)

for any ε-cube Q.
We now need only to add on all cubes Q of the family Fε
to obtain (*).
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Sketch of proof: the inequality ≥ when P(E) <∞
When P(E) < ∞ we know that ∂∗E is countably H n−1-rectifiable, so on
small scales, near to H n−1-a.e. point, ∂∗E is close to an halfspace and E is
close to an halfplane. In this case, it is heuristically clear that the optimal
choice of the cubes is as in the picture:

However, we have to be careful, because we have a global bound ε1−n on the
number of cubes that we have to choose when working on an ε-scale.
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Sketch of proof: the inequality ≥ when P(E) <∞

The correct choice of the number of cubes is somehow dictated by the
perimeter itself, so we work with the localized quantities

Jε(E,Ω) = εn−1 sup
Fε

∑
Q∈Fε

−
∫

Q

∣∣∣∣χE(x)− −
∫

Q
χE

∣∣∣∣ dx

where, this time, we consider only cubes Q contained in Ω and the cardinality
of Fε does not exceed the scale-invariant quantity P(E,Ω)ε1−n. Then, a
blow-up analysis provides the result.
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Sketch of proof: the inequality ≥ when P(E) =∞

This is one of the most delicate parts of the proof. We have to show that

(∗) P(E) =∞ =⇒ lim inf
ε↓0

Iε(χE) ≥ 1
2
.

I will describe a soft argument which proves the existence of constants ξ(n),
η(n) satisfying

(∗∗) lim sup
ε↓0

Iε(χE) < ξ(n) =⇒ P(E) ≤ η(n) lim sup
ε↓0

Iε(χE)

which gives (*) with ξ(n) in place of 1/2.

This already illustrates the “treshold” phenomenon, but with non-optimal
constants, and the actual proof is a (nontrivial) refinement of this idea.
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Sketch of proof: the inequality ≥ when P(E) =∞
Let us consider the canonical dyadic subdivision (up to a Lebesgue negligible
set) of (0, 1)n in 2hn cubes Qi with length side 2−h. We define on the scale
ε = 2−h an approximate interior Inth(E) of E by considering the set

Ih :=

{
i ∈ {1, . . . , 2hn} : −

∫
Qi

χE >
3
4

}
and taking the union of the cubes Qi, i ∈ Ih. Analogously we define a set of
indices Eh and the corresponding approximate exterior Exth(E) = Inth(Q \E).
We denote by Fh the complement of Ih ∪ Eh and by Bdryh(Q) the union of the
corresponding cubes.

Qi     v

Qi‘

Qi‘‘

~
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Sketch of proof: the inequality ≥ when P(E) =∞
Since Inth(E) → E in L1

loc as h → ∞, by the lower semicon-
tinuity of the perimeter it suffices to give a uniform estimate on
P(Inth(E)) = H n−1(∂ Inth(E)) as h → ∞ under a smallness assump-
tion on lim suph I2−h(χE). Since −

∫
Qi
|χE(x) − −

∫
Qi
χE| dx ≥ 1/4 for all i ∈ Fh

(by definition of Fh), we obtain that

I2−h(χE) <
1
4

=⇒ # Fh ≤ 4 I2−h(χE) (2−h)1−n < (2−h)1−n,

which provides a uniform estimate on H n−1(∂ Bdryh(E)). Hence, to control
H n−1(∂ Inth(E)) it suffices to bound the number of faces F ⊂ Q common to
a cube Qi and a cube Qj, with i ∈ Ih and j ∈ Eh. For this, notice that if Q is the
parent cube with side length 21−h containing Qi ∪ Qj, it is easily seen that

−
∫

Q

∣∣∣χE(x)− −
∫

Q
χE

∣∣∣ dx ≥ 2−1−n

and this leads once more to an estimate of the number of these cubes with
(21−h)1−n provided I21−h(χE) < 2−1−n. Combining this estimate with the
uniform estimate on H n−1(∂ Bdryh(E)) leads to (**).
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