High Dimensional Learning

 From Images to Quantum Chemistry

 Joan Bruna, Matthew Hirn, Stéphane Mallat Edouard Oyallon, Nicolas Poilvert, Laurent Sifre, Irène Waldspurger

> **École Normale Supérieure** [www.di.ens.fr/data](http://www.di.ens.fr/data/scattering)

High Dimensional Learning

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- given *n* sample values $\{x_i, y_i = f(x_i)\}_{i \leq n}$ *•* Classification: estimate a class label *f*(*x*)

High Dimensional Learning

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- *•* Regression: approximate a *functional f*(*x*) given *n* sample values $\{x_i, y_i = f(x_i) \in \mathbb{R}\}_{i \leq n}$

Physics: Many Body Problem Interaction energy $f(x)$ of a system: $x =$ $\{$ positions, values $\}$

Astronomy Quantum Chemistry

Curse of Dimensionality

local interpolation if *f* is regular and there are close examples: • $f(x)$ can be approximated from examples $\{x_i, f(x_i)\}\$ by

• Need ϵ^{-d} points to cover $[0, 1]^d$ at a Euclidean distance ϵ \Rightarrow $\|x - x_i\|$ is always large

Learning by Euclidean Embedding

Data: $x \in \mathbb{R}^d$ $||x - x'||$: non-informative $\Phi x \in \mathcal{H}$ Representation Linear Classifier

 $C_1 ||\Phi x - \Phi x'|| \leq \Delta(x, x') \leq C_2 ||\Phi x - \Phi x'||$ Equivalent Euclidean metric:

How to define Φ ?

Known Euclidean Embeddings

• Nonlinear Dimensionality Reduction

• x

 $\int \frac{dx}{x}$

 \overline{x}_5

 \bullet If the data is in a low-dimensional manifold, no curse, the manifold metric is locally nearly Euclidean:

$$
\langle \Phi(x), \Phi(x') \rangle = e^{-\frac{||x - x'||^2}{2\sigma^2}}
$$

- LHC _UILO OVCI HIIIUC SCU OI POIIIUS $\partial \psi_i$ (i) • Embedding of Banach metrics over finite set of points $\{x_i\}_i$ \Leftrightarrow Euclidean embedding of graphs *• x*? *Bourgain/Johnsone Lindenstrass • x*¹ x_2 $\overline{x_4}$ *• x*³
- *•* Generalisation for all *x*: need to embed the full space. Must impose a regularity condition on the metric.

Deep Convolution Neworks

• The revival of an old (1950) idea: *Y. LeCun*

Optimize the L_k with support constraints: over 10^9 parameters Exceptional results for *images, speech, bio-data* classification. Products by FaceBook, IBM, Google, Microsoft, Yahoo...

Why does it work so well ?

- Deep multiscale networks for embedding geometric metrics: invariance and continuity to diffeomorphisms
- Models of random processes and image classification
- Learning physics: quantum chemistry energy regression

• Low-dimensional "geometric shapes"

Deformation metric: (classic mechanics) Grenander Diffeomorphism action: $D_{\tau}x(u) = x(u - \tau(u))$

$$
\Delta(x, x') \sim \min_{\tau} \|D_{\tau}x - x'\| + \|\nabla \tau\|_{\infty} \|x\|
$$

Invariant to translations
amplitude

Image Metrics

• High dimensional textures: ergodic stationary processes

Bounded by a deformation metric: \bullet What metric on stationary processes ? (statistical physics)

 $\Delta(x, x') \le \min_{\tau} \|D_{\tau}x - x'\| + \|\nabla \tau\|_{\infty} \|x\|$

But not equivalent: need that $\Delta(x',x) = 0$ if x and x' are realisations of same process

• Embedding: find an equivalent Euclidean metric

$$
\|\Phi x - \Phi x'\| \sim \Delta(x, x')
$$

with $\Delta(x, x') \le \min_{\tau} \|D_{\tau}x - x'\| + \|\nabla \tau\|_{\infty} \|x\|$

- Equivalent conditions on Φ :
	- Continuous in \mathbf{L}^2 : $D_{\tau} = Id \Rightarrow ||\Phi x \Phi x'|| \leq C ||x x'||$
	- Lipschitz continuous to diffeomorphism actions:

$$
x' = D_{\tau} x \implies \|\Phi x - \Phi D_{\tau} x\| \le C \|\nabla \tau\|_{\infty} \|x\|
$$

 \Rightarrow Invariance to translation

Fourier Deformation Instability

• Fourier transform $\hat{x}(\omega) = \int x(t) e^{-i\omega t} dt$

The modulus is invariant to translations:

 $x_c(t) = x(t - c) \Rightarrow \Phi(x) = |\hat{x}| = |\hat{x}|$ *c|*

- Continuous in \mathbf{L}^2 : $\|\hat{x}| |\hat{x}'\| \leq (2\pi)^{-1/2} \|x x'\|$
- $|\hat{x}_{\tau}(\omega)| \triangleq |\hat{x}(\omega)|$ \Rightarrow $\|\hat{x} - \hat{x}_{\tau}\| \Rightarrow \|\nabla \tau\|_{\infty} \|x\|$ $\left| \int \hat{x}_{\tau}(\omega) \right| - \left| \hat{x}(\omega) \right| \right|$ is big at high frequencies • Instabilites to small deformations $x_{\tau}(t) = x(t - \tau(t))$: ω

 Scale separation with Wavelets

 $\text{rotated and dilated: } \psi_{\lambda}(t) = 2^{-j} \psi(2^{-j} r_{\theta} t) \text{ with } \lambda = (2^{j}, \theta)$ • Complex wavelet: $\psi(t) = g(t) \exp i \xi t$, $t = (t_1, t_2)$

 $Wx =$ $\int x \star \phi_2 J(t)$ $x \star \psi_{\lambda}(t)$ ◆ $\lambda \leq 2^{J}$ *•* Wavelet transform:

Preserves norm: $||Wx||^2 = ||x||^2$.

Fast Wavelet Transform

0

 \sum

Scale

 $|x \star \psi_{2^1, \theta}|$

quality and the transfer of

ENS

φJ

Wavelet Translation Invariance

Modulus improves invariance: $|x \star \psi_{\lambda_1}(\vec{x}) \!\!\uparrow \!\!\nleftrightarrow \!\!\!\downarrow \!\!\!\!\setminus \!\!\!\!\downarrow \!\!\!\!\downarrow \rangle \!\!\!\uparrow \!\!\!\!\downarrow \ \star \psi_{\lambda_1}^a(\psi)_{\lambda_1}^a(\psi)_{\lambda_1}^a(\psi) + \star \psi_{\lambda_1}^b(\psi_{\lambda_1}^b|\psi)$ $\sqrt{2}$ $\partial_t^2 \nabla_t^2 \nabla_t^2 \phi_{\lambda_1}^2 \nabla_t^2 \psi_{\lambda_1}^2 \nabla_t^2 \phi_{\lambda_1}^2 \nabla_t^2 \psi_{\lambda_1}^2 \nabla_t^2 \psi_{\lambda_1}^2$

Second wavelet transform modulus

$$
|W_2| |x \star \psi_{\lambda_1}| = \left(\begin{array}{c} |x \star \psi_{\lambda_1}| \star \phi_{2^J}(t) \\ |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t) \end{array} \right)_{\lambda_2}
$$

Sunday, November 16, 14

$$
\text{ENS}\left\{\begin{array}{c}\text{Scattering Properties} \\ S_Jx = \left(\begin{array}{c} x \star \phi_{2^J} \\ \|x \star \psi_{\lambda_1}| \star \phi_{2^J} \\ \|x \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \phi_{2^J} \\ \|x \star \psi_{\lambda_2}| \star \psi_{\lambda_3}| \star \phi_{2^J} \end{array}\right)_{\lambda_1, \lambda_2, \lambda_3, \dots} = \dots |W_3| \, |W_2| \, |W_1| \, x\right\}\end{array}\right.
$$

 $\textcolor{red}{\#}\textcolor{red}{\#}\textcolor{red}{\#}\textcolor{red}{\#}\textcolor{red}{\#}\textcolor{red}{W_k}{\#}\textcolor{red}{D_\tau}\textcolor{blue}{\#}\textcolor{red}{W_k}\textcolor{red}{\#}\textcolor{red}{W_k}{\#}\textcolor{red}{W_k}{\#}\textcolor{red}{W_k}\textcolor{red}{\#}\textcolor{red}{W_k}\textcolor{red}{\#}\textcolor{red}{W_k}\textcolor{red}{\#}\in\textcolor{blue}{\mathcal{C}}'\textcolor{red}{\#}\nabla\tau\textcolor{red}{\|_\infty}$

preserves norms $||S_Jx|| = ||x||$ *contractive* $||S_Jx - S_Jy|| \le ||x - y||$ (L² *stability*) Theorem: *For appropriate wavelets, a scattering is*

translations invariance and deformation stability: $if D_{\tau}x(u) = x(u - \tau(u))$ *then* lim $J \rightarrow \infty$ $||S_J D_\tau x - S_J x|| \leq C ||\nabla \tau||_\infty ||x||$

Digit Classification: MNIST

6757863485

 $21799/284/6$

 $368/79669$

Joan Bruna

$$
x \longrightarrow S_J x
$$
\n
$$
x \longrightarrow 0 \qquad \text{Linear Classifier}
$$
\n
$$
y = f(x)
$$

Classification Errors

LeCun et. al.

Classification of Textures

J. Bruna

CUREt database 61 classes

Scattering Moments of Processes

The scattering transform of a stationary process *X*(*t*)

$$
S_JX=\left(\begin{array}{c}X\star \phi_{2^J}\\|X\star \psi_{\lambda_1}|\star \phi_{2^J}\\|\|X\star \psi_{\lambda_2}|\star \psi_{\lambda_2}|\star \phi_{2^J}\\|\|X\star \psi_{\lambda_2}|\star \psi_{\lambda_2}|\star \psi_{\lambda_3}|\star \phi_{2^J}\\...\\ \end{array}\right)_{\lambda_1,\lambda_2,\lambda_3,...}
$$

converges to moments if X is ergodic when 2^J increases

$$
\mathbb{E}(SX) = \left(\begin{array}{c}\n\mathbb{E}(X) \\
\mathbb{E}(|X \star \psi_{\lambda_1}|) \\
\mathbb{E}(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) \\
\mathbb{E}(|||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) \\
\cdots\n\end{array}\right)_{\lambda_1, \lambda_2, \lambda_3, \dots}
$$

• Does $E(SX)$ approximates well enough the distribution of X?

Classification of Textures

• Can characterise non-Gaussian processes

Rotation and Scaling Invariance

Laurent Sifre

UIUC database: 25 classes

ENS

Extension to Rigid Mouvements

Laurent Sifre

action on an image: $(v, \theta) \cdot x(u) = x(r_{\theta}^{-1}(u - v))$ • Special Euclidean group $G = \{(v, \theta) \in \mathbb{R}^2 \times [0, 2\pi)\}\$

$$
(v,\theta)^{-1} = (-r_{-\theta}v, -\theta)
$$

• Action on wavelet coefficients:

$$
(v', \theta')x(x(u)) \longrightarrow [W_1] \longrightarrow \text{Tr}(x \overline{\theta}^1/2(y \theta(u))' \rightarrow \theta_1(y \theta, \theta))
$$

$$
\int x(u) du
$$

Extension to Rigid Mouvements Fast computations of roto-translation convolutions with there are thus 2⇥2*JN*² coefficients in *S*0*x* and 2⇥2*JN*2*J*

separable wavelet filters ⇥2*,j*2*,k*² (*u,*) = ⇤2*,j*² (*u*)⇤*k*² ()

 $Laurent\; Sifre$

Roto-translation scattering is computed over image

patches of size 2*^J* where the image is approximately lo-

Sx = ⇤*x* ⇥ ⇥*^J* (*u*) *, U*1*x ^J* (*p*1) *, U*2*x ^J* (*p*2)⌃ *,*

group convolutions of $x_j(u, \theta)$ with wavelets $\psi_{\lambda_2}(u, \theta)$ • To build invariants: second wavelet transform on $\mathbf{L}^2(G)$: *N S Z UIII W* \mathcal{L} $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$ *A* $(G):$ tively ²⇥2*JN*2*J*(*^J* ⇤ ¹)*^K* log² *^K*² coefficients. The to- θ ³⁴¹*N*2¹⁰²⁴ for *^J* ⁼ ⁵ and *^K* ⁼ ⁸. The overall complexity

$$
x_j \circledast \psi_{\lambda_2}(u,\theta) = \int_{\mathbb{R}^2} \int_0^{2\pi} x_j(v',\theta') \, \psi_{\lambda_2}\Big((v',\theta')^{-1} \, (u,\theta) \Big) \, dv' d\theta'
$$

• Scattering on rigid n
\nWavelets on Translations
\n
$$
x(u) \longrightarrow \boxed{|W_1|} \longrightarrow x_j(u)
$$

\n $\downarrow x(u) du$
\n $\downarrow x(u) du$
\n $\downarrow x_2$
\n $\downarrow x_3$
\n $\downarrow x_2$
\n $\downarrow x_3$
\n $\downarrow x_4$
\n $\downarrow x_5$
\n $\downarrow x_2$
\n $\downarrow x_1$
\n $\downarrow x_3$
\n $\downarrow x_4$
\n $\downarrow x_5$
\n $\downarrow x_6$
\n $\downarrow x_7$
\n $\downarrow x_8$
\n $\downarrow x_9$
\n $\downarrow x_9$
\n $\downarrow x_9$
\n $\downarrow x_1$
\n $\downarrow x_1$
\n $\downarrow x_1$
\n $\downarrow x_2$
\n $\downarrow x_3$
\n $\downarrow x_1$
\n $\downarrow x_2$
\n $\downarrow x_3$
\n $\downarrow x_1$
\n $\downarrow x_2$
\n $\downarrow x_3$
\n $\downarrow x_4$
\n $\downarrow x_5$
\n $\downarrow x_6$
\n $\downarrow x_7$
\n $\downarrow x_8$
\n $\downarrow x_9$
\n $\downarrow x_9$
\n $\downarrow x_1$
\n $\downarrow x_1$
\n $\downarrow x_2$
\n $\downarrow x_3$
\n $\downarrow x_4$
\n $\downarrow x_5$
\n $\downarrow x_6$
\n $\downarrow x_7$
\n $\downarrow x_8$
\n $\downarrow x_9$
\n $\downarrow x_9$
\n $\downarrow x_1$
\n $\downarrow x_1$
\n $\downarrow x_2$
\n \downarrow

Rotation and Scaling Invariance

Laurent Sifre

UIUC database: 25 classes

ENS

Scattering Inversion: Phase Recovery

I. Waldspurger

Theorem For appropriate wavelets and any
$$
J \leq \infty
$$

\n
$$
|W|x = \left\{ x \star \phi_J, |x \star \psi_\lambda| \right\}_\lambda
$$

is invertible and the inverse is weakly continuous.

Joan Bruna

• Compute \tilde{x} such that:

 $\forall k, \forall \lambda_1, ..., \lambda_k, S_J \tilde{x}(\lambda_1, ..., \lambda_k) = S_J x(\lambda_1, ..., \lambda_k)$

there are $O(\log_2^m N)$ scattering coefficients: • If *x* is of period $N = 2^J$, at orders $k \leq m$

$$
S_Jx(\lambda_1,...,\lambda_k)=\int_{[0,2^J]^2}||x\star\psi_{\lambda_1}|\star...\star\psi_{\lambda_k}(u)|\,du
$$

Compressed Shape Sensing

Joan Bruna

Original images of *N*² pixels: • Numerical recovery from 1st and 2nd order coefficients:

For $2^{J} = N$, $m = 1$ Reconstruction from $\{||x||_1, ||x \star \psi_{\lambda_1}||_1\}_{\lambda_1}$: $O(\log_2 N)$ coeff.

Order $m = 2$ Reconstruction from $\{\Vert x\Vert_1, \Vert x \star \psi_{\lambda_1} \Vert_1, \Vert |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2} \Vert_1\}$: $O(\log_2^2 N)$ coeff.

Example 2 Extra Ergodic Texture Reconstructions

Joan Bruna Original Textures

2D Turbulence

Gaussian process model with same second order moments

For $2^J = N$: $O(\log N^2)$ scattering moments: $||x \star \psi_{\lambda_1}||_1 \approx \mathbb{E}(|x \star \psi_{\lambda_1}|)$, $|||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}||_1 \approx \mathbb{E}(||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|)$

Representation of Audio Textures

Joan Bruna

• $x \in \mathbb{R}^d$ realization of a stationary process

Original Gaussian model Scattering

Water

Paper

Cocktail Party

EMultiscale Scattering Reconstructions-E

*N*² pixels Original Images

E.

Scattering Reconstruction

 $2^J = 16$ $1.4 N²$ coeff.

 $2^{J} = 64$ $N^2/8$ coeff.

Sunday, November 16, 14

Learning Physics: N-Body Problem - 1

• Energy of *d* interacting bodies:

Matthew Hirn N. Poilvert

Can we learn the interaction energy $f(x)$ of a system with $x =$ $\{$ positions, values $\}$?

Astronomy Quantum Chemistry

 Second Order Interactions

• Energy of *d* interacting bodies (Coulomb): for point charges $x(u) = \sum$ *d* $k=1$ $q_k \, \delta(u-p_k)$ then $\text{potential } V(r) = |r|$ $-\beta$: $f(x) = \sum$ *d* $\sqrt{ }$ *d* $q_k q_{k'}$ $|p_k - p_{k'}|^\beta$

diagonalized in Fourier : $f(x) = (2\pi)^{-2}$ z
Z $|\hat{x}(\omega)|^2 \hat{V}$ $(\omega) d\omega$

 $k=1$

 $k'=1$

can be approximated at best by summing $\sim d$ terms.

Many Body Interactions

• Energy of *d* interacting bodies (Coulomb):

Matthew Hirn N. Poilvert

(*Rocklin, Greengard) Fast multipoles:* each particle interacts with *O*(log *d*) groups

Potential
$$
V(u) = |u|^{-\beta} \Rightarrow \underbrace{\begin{array}{c}\bullet \\
\bullet \\
\bullet \\
\bullet\n\end{array}}\right)
$$

Theorem: For any $\epsilon > 0$ there exists wavelets with

$$
f(x) = \sum_{\lambda} v_{\lambda} ||x \star \psi_{\lambda}||^{2} (1 + \epsilon)
$$

$$
O(\log d) \text{ terms}
$$

Quantum Chemistry

Protonic charges of a molecule: $x(u) = \sum_{k=1}^{d}$ $\sum_{k=1}^{a} q_k \, \delta(u-p_k)$ Atomic energy $f(x) =$ molecule energy - isolated atoms energy Density Functional Theory: computes the electronic density $\rho(u)$

Hydrogne, Carbon Nitrogen, Oxygen Sulfur, Chlorine

 Quantum Chemistry

Atomic energy f is computed from each electronic orbital $\phi_k(u)$

$$
\rho(u) = \sum_{k=1}^K |\phi_k(u)|^2
$$

Kohn-Sham model:

$$
f(x) = E(\rho) = T(\rho) + \int \rho(u) V(u) + \frac{1}{2} \int \frac{\rho(u)\rho(v)}{|u - v|} du dv + E_{xc}(\rho)
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\nAtomic Kinetic electron-nuclei electron-electron
\nenergy energy attraction Coulomb repulsion correlat. energy
\nwhere ρ minimises the energy $E(\rho)$

• $f(x)$ is invariant to isometries and is deformation stable

 Quantum Chemistry *Matthew Hirn N. Poilvert*

• Data bases $\{x_i, f(x_i)\}\$ of 2D molecules with up to 20 atoms

invariant to action of isometries in \mathbb{R}^3 : *•* Sparse regression computed over a representation

scattering coefficients and squared $\Phi x = {\phi_n(x)}_n$: Fourier modulus coefficients and squared or

Partial Least Square regression on the training set:

$$
f_M(x) = \sum_{k=1}^{M} w_k \, \phi_{n_k}(x)
$$

 Quantum Chemistry

Matthew Hirn

N. Poilvert

• Data bases $\{x_i, f(x_i)\}\$ i of 2D molecules with up to 20 atoms

Learning with Unknown Geometry

Xu Chen, Xiu Cheng

CIFAR-10: 10 classes with 500 training images per class

If the geometry is unknown (permutation of pixels):

Do not learn the geometry (NP complete) Learn the support of multiscale wavelets (polynomial algo.)

Learned Haar Scattering : 27% errors (state of the art)

- A major challenge of data analysis is to find Euclidean embeddings of metrics.
- Continuity to action of diffeomorphisms \Rightarrow wavelets
- Unknown geometry: learn wavelets on appropriate groups. • Known geometry \Rightarrow no need to learn.
- *•* Can learn physics from prior on geometry and invariants.
- Multitude of open mathematical problems at interface of: geometry, harmonic analysis, probability, statistics, PDE.