High Dimensional Learning

From Images to Quantum Chemistry

Joan Bruna, Matthew Hirn, Stéphane Mallat Edouard Oyallon, Nicolas Poilvert, Laurent Sifre, Irène Waldspurger

> École Normale Supérieure www.di.ens.fr/data

High Dimensional Learning

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- Classification: estimate a class label f(x)given n sample values $\{x_i, y_i = f(x_i)\}_{i \le n}$

High Dimensional Learning

- High-dimensional $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:
- **Regression:** approximate a functional f(x)given n sample values $\{x_i, y_i = f(x_i) \in \mathbb{R}\}_{i \le n}$

Physics: Many Body Problem Interaction energy f(x) of a system: $x = \{ \text{positions, values} \}$

Astronomy

Quantum Chemistry

Curse of Dimensionality

• f(x) can be approximated from examples $\{x_i, f(x_i)\}_i$ by local interpolation if f is regular and there are close examples:

• Need ϵ^{-d} points to cover $[0,1]^d$ at a Euclidean distance ϵ $\Rightarrow ||x - x_i||$ is always large

Learning by Euclidean Embedding -

Data: $x \in \mathbb{R}^d$ $\|x - x'\|$: non-informative $\Phi x \in \mathcal{H}$ Linear Classifier

Equivalent Euclidean metric: $C_1 \|\Phi x - \Phi x'\| \le \Delta(x, x') \le C_2 \|\Phi x - \Phi x'\|$

How to define Φ ?

Known Euclidean Embeddings

• If the data is in a low-dimensional manifold, no curse, the manifold metric is locally nearly Euclidean:

$$\langle \Phi(x), \Phi(x') \rangle = e^{-\frac{\|x-x'\|^2}{2\sigma^2}}$$

• Embedding of Banach metrics over finite set of points $\{x_i\}_i$ \Leftrightarrow Euclidean embedding of graphs Bourgain/Johnsone Lindenstrass

 x_5

Generalisation for all x: need to embed the full space.
Must impose a regularity condition on the metric.

Deep Convolution Neworks

• The revival of an old (1950) idea: Y. LeCun

Optimize the L_k with support constraints: over 10⁹ parameters Exceptional results for *images, speech, bio-data* classification. Products by FaceBook, IBM, Google, Microsoft, Yahoo...

Why does it work so well?

- Deep multiscale networks for embedding geometric metrics: invariance and continuity to diffeomorphisms
- Models of random processes and image classification
- Learning physics: quantum chemistry energy regression

• Low-dimensional "geometric shapes"

Deformation metric: (classic mechanics) Grenander Diffeomorphism action: $D_{\tau}x(u) = x(u - \tau(u))$

$$\Delta(x, x') \sim \min_{\tau} \|D_{\tau}x - x'\| + \|\nabla\tau\|_{\infty} \|x\|$$

$$\downarrow$$
Invariant to translations
diffeomorphism
amplitude

Image Metrics

• High dimensional textures: ergodic stationary processes

• What metric on stationary processes ? (statistical physics) Bounded by a deformation metric:

 $\Delta(x, x') \le \min \|D_{\tau}x - x'\| + \|\nabla\tau\|_{\infty} \|x\|$

But not equivalent: need that $\Delta(x', x) = 0$ if x and x' are realisations of same process

• Embedding: find an equivalent Euclidean metric

$$|\Phi x - \Phi x'|| \sim \Delta(x, x')$$

with $\Delta(x, x') \le \min_{\tau} \|D_{\tau}x - x'\| + \|\nabla\tau\|_{\infty} \|x\|$

- Equivalent conditions on Φ :
 - Continuous in L²: $D_{\tau} = Id \Rightarrow ||\Phi x \Phi x'|| \le C ||x x'||$
 - Lipschitz continuous to diffeomorphism actions:

$$x' = D_{\tau}x \implies \|\Phi x - \Phi D_{\tau}x\| \le C \|\nabla \tau\|_{\infty} \|x\|$$

 \Rightarrow Invariance to translation

Fourier Deformation Instability

• Fourier transform $\hat{x}(\omega) = \int x(t) e^{-i\omega t} dt$

The modulus is invariant to translations:

 $x_c(t) = x(t-c) \Rightarrow \Phi(x) = |\hat{x}| = |\hat{x}_c|$

- Continuous in \mathbf{L}^2 : $||\hat{x}| |\hat{x}'|| \le (2\pi)^{-1/2} ||x x'||$
- Instabilities to small deformations $x_{\tau}(t) = x(t \tau(t))$: $||\hat{x}_{\tau}(\omega)| - |\hat{x}(\omega)||$ is big at high frequencies $|\hat{x}_{\tau}(\omega)| \qquad |\hat{x}(\omega)|$ $\Rightarrow |||\hat{x}| - |\hat{x}_{\tau}||| \gg ||\nabla \tau||_{\infty} ||x||$

Scale separation with Wavelets

• Complex wavelet: $\psi(t) = g(t) \exp i\xi t$, $t = (t_1, t_2)$ rotated and dilated: $\psi_{\lambda}(t) = 2^{-j} \psi(2^{-j}r_{\theta}t)$ with $\lambda = (2^j, \theta)$

• Wavelet transform: $Wx = \begin{pmatrix} x \star \phi_{2^J}(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{\lambda \leq 2^J}$

Preserves norm: $||Wx||^2 = ||x||^2$.

Fast Wavelet Transform

 $|x \star \psi_{2^1,\theta}|$

2

Scale

ENS

Wavelet Translation Invariance

Modulus improves invariance: $|x \star \psi_{\lambda_1}(x) \dagger \psi_{\lambda_1}(x) \dagger \psi_{\lambda_1}(x) \dagger \psi_{\lambda_1}(x) \dagger \psi_{\lambda_1}(x) \dagger \psi_{\lambda_1}(x) = 0$

Second wavelet transform modulus

$$|W_2| |x \star \psi_{\lambda_1}| = \left(\begin{array}{c} |x \star \psi_{\lambda_1}| \star \phi_{2J}(t) \\ |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t)| \end{array} \right)_{\lambda_2}$$

Sunday, November 16, 14

$$S_{J}x = \begin{pmatrix} x \star \phi_{2^{J}} \\ |x \star \psi_{\lambda_{1}}| \star \phi_{2^{J}} \\ ||x \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \phi_{2^{J}} \\ ||x \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}| \star \phi_{2^{J}} \\ \dots \end{pmatrix}_{\lambda_{1},\lambda_{2},\lambda_{3},\dots} = \dots |W_{3}| |W_{2}| |W_{1}| x$$

 $\texttt{Wnanha:} \| \texttt{W}[W_k, \mathcal{D}_\tau] \| W_k \| \mathcal{W}_k \mathcal{D}_k x' \mathcal{D}_\tau W_k \| \leq \mathscr{C} \| \nabla \tau \|_{\infty}$

Theorem: For appropriate wavelets, a scattering is contractive $||S_J x - S_J y|| \le ||x - y||$ (L² stability) preserves norms $||S_J x|| = ||x||$

translations invariance and deformation stability: if $D_{\tau}x(u) = x(u - \tau(u))$ then $\lim_{J \to \infty} \|S_J D_{\tau}x - S_J x\| \le C \|\nabla \tau\|_{\infty} \|x\|$

Digit Classification: MNIST

Joan Bruna

Classification Errors

Training size	Conv. Net.	Scattering
300	7.2%	4.4 %
5000	1.5%	1.0 %
50000	0.5%	0.4 %

LeCun et. al.

Classification of Textures

J. Bruna

CUREt database 61 classes

Scattering Moments of Processes

The scattering transform of a stationary process X(t)

$$S_{J}X = \begin{pmatrix} X \star \phi_{2J} \\ |X \star \psi_{\lambda_{1}}| \star \phi_{2J} \\ ||X \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \phi_{2J} \\ |||X \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}| \star \phi_{2J} \\ \dots \end{pmatrix}_{\lambda_{1},\lambda_{2},\lambda_{3},\dots}$$

converges to moments if X is ergodic when 2^J increases

$$\mathbb{E}(SX) = \begin{pmatrix} \mathbb{E}(X) \\ \mathbb{E}(|X \star \psi_{\lambda_1}|) \\ \mathbb{E}(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) \\ \mathbb{E}(||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) \\ \dots \end{pmatrix}_{\lambda_1, \lambda_2, \lambda_3, \dots}$$

• Does $\mathbb{E}(SX)$ approximates well enough the distribution of X ?

Classification of Textures

• Can characterise non-Gaussian processes

Rotation and Scaling Invariance

Laurent Sifre

UIUC database: 25 classes

ENS

20 %

20

Extension to Rigid Mouvements

Laurent Sifre

• Special Euclidean group $G = \{(v, \theta) \in \mathbb{R}^2 \times [0, 2\pi)\}$ action on an image: $(v, \theta) \cdot x(u) = x(r_{\theta}^{-1}(u - v))$

$$(v,\theta)^{-1} = (-r_{-\theta}v, -\theta)$$

• Action on wavelet coefficients:

Extension to Rigid Mouvements

Laurent Sifre

• To build invariants: second wavelet transform on $L^2(G)$: group convolutions of $x_j(u, \theta)$ with wavelets $\psi_{\lambda_2}(u, \theta)$

$$x_j \circledast \psi_{\lambda_2}(u,\theta) = \int_{\mathbb{R}^2} \int_0^{2\pi} x_j(v',\theta') \,\psi_{\lambda_2}\Big((v',\theta')^{-1} \,(u,\theta)\Big) \,dv'd\theta'$$

• Scattering on rigid n
Wavelets on Translations

$$x(u) \rightarrow |W_1| \rightarrow x_j(\mu)$$

 $\int x(u) du$
 $f(u) du$
 $Wavelets on Rigid Mvt.$
 $\psi_{\lambda_2}(v, \theta) \rightarrow |W_3|$
 $\int |w_j| + |w_$

Rotation and Scaling Invariance

Laurent Sifre

UIUC database: 25 classes

ENS

Scattering Inversion: Phase Recovery-

I. Waldspurger

Theorem For appropriate wavelets and any
$$J \leq \infty$$

 $|W|x = \left\{ x \star \phi_J, |x \star \psi_\lambda| \right\}_{\lambda}$

is invertible and the inverse is weakly continuous.

Joan Bruna

• Compute \tilde{x} such that:

 $\forall k, \ \forall \lambda_1, ..., \lambda_k \ , \ S_J \tilde{x}(\lambda_1, ..., \lambda_k) = S_J x(\lambda_1, ..., \lambda_k)$

• If x is of period $N = 2^J$, at orders $k \le m$ there are $O(\log_2^m N)$ scattering coefficients:

$$S_J x(\lambda_1, \dots, \lambda_k) = \int_{[0, 2^J]^2} ||x \star \psi_{\lambda_1}| \star \dots | \star \psi_{\lambda_k}(u)| du$$

Compressed Shape Sensing

Joan Bruna

• Numerical recovery from 1st and 2nd order coefficients: Original images of N^2 pixels:

For $2^J = N$, m = 1Reconstruction from $\{ \|x\|_1, \|x \star \psi_{\lambda_1}\|_1 \}_{\lambda_1} : O(\log_2 N)$ coeff.

Order m = 2Reconstruction from $\{ \|x\|_1, \|x \star \psi_{\lambda_1}\|_1, \||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}\|_1 \}$: $O(\log_2^2 N)$ coeff.

Sunday, November 16, 14

Ens Ergodic Texture Reconstructions

Joan Bruna

Original Textures

2D Turbulence

Gaussian process model with same second order moments

For $2^J = N$: $O(\log N^2)$ scattering moments: $\|x \star \psi_{\lambda_1}\|_1 \approx \mathbb{E}(|x \star \psi_{\lambda_1}|)$, $\||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}\|_1 \approx \mathbb{E}(||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|)$

Representation of Audio Textures

Joan Bruna

• $x \in \mathbb{R}^d$ realization of a stationary process

Original Gaussian model Scattering

Water

Paper

Cocktail Party

Multiscale Scattering Reconstructions

Original Images N^2 pixels

E

Scattering Reconstruction

 $2^{J} = 16$ 1.4 N² coeff.

 $2^{J} = 64$ $N^2/8$ coeff.

Sunday, November 16, 14

Learning Physics: N-Body Problem -

• Energy of d interacting bodies:

N. Poilvert Matthew Hirn

Can we learn the interaction energy f(x) of a system with $x = \{ \text{positions, values} \}$?

Astronomy

Quantum Chemistry

Second Order Interactions

• Energy of d interacting bodies (Coulomb): for point charges $x(u) = \sum_{k=1}^{d} q_k \,\delta(u - p_k)$ then potential $V(r) = |r|^{-\beta}$: $f(x) = \sum_{k=1}^{d} \sum_{k'=1}^{d} \frac{q_k q_{k'}}{|p_k - p_{k'}|^{\beta}}$

diagonalized in Fourier : $f(x) = (2\pi)^{-2} \int |\hat{x}(\omega)|^2 \hat{V}(\omega) d\omega$

can be approximated at best by summing $\sim d$ terms.

Many Body Interactions

• Energy of d interacting bodies (Coulomb):

N. Poilvert Matthew Hirn

Fast multipoles: each particle interacts with $O(\log d)$ groups (Rocklin, Greengard)

Potential
$$V(u) = |u|^{-\beta} \Rightarrow$$

Theorem: For any $\epsilon > 0$ there exists wavelets with

$$f(x) = \sum_{\lambda} v_{\lambda} \|x \star \psi_{\lambda}\|^{2} (1 + \epsilon)$$
$$O(\log d) \text{ terms}$$

Quantum Chemistry

Protonic charges of a molecule: $x(u) = \sum_{k=1}^{d} q_k \,\delta(u - p_k)$ Atomic energy f(x) = molecule energy - isolated atoms energy Density Functional Theory: computes the electronic density $\rho(u)$

Hydrogne, Carbon Nitrogen, Oxygen Sulfur, Chlorine

Quantum Chemistry

Atomic energy f is computed from each electronic orbital $\phi_k(u)$

$$\rho(u) = \sum_{k=1}^{K} |\phi_k(u)|^2$$

Kohn-Sham model:

• f(x) is invariant to isometries and is deformation stable

• Data bases $\{x_i, f(x_i)\}_i$ of 2D molecules with up to 20 atoms

N. Poilvert

Quantum Chemistry

• Sparse regression computed over a representation invariant to action of isometries in \mathbb{R}^3 :

 $\Phi x = \{\phi_n(x)\}_n : \left| \begin{array}{c} \text{Fourier modulus coefficients and squared} \\ \text{scattering coefficients and squared} \end{array} \right.$

Partial Least Square regression on the training set:

$$f_M(x) = \sum_{k=1}^M w_k \,\phi_{n_k}(x)$$

Quantum Chemistry

Matthew Hirn

N. Poilvert

• Data bases $\{x_i, f(x_i)\}_i$ of 2D molecules with up to 20 atoms

Learning with Unknown Geometry -

Xu Chen, Xiu Cheng

CIFAR-10: 10 classes with 500 training images per class

Cars

If the geometry is unknown (permutation of pixels):

Do not learn the geometry (NP complete) Learn the support of multiscale wavelets (polynomial algo.)

Learned Haar Scattering : 27% errors (state of the art)

- A major challenge of data analysis is to find Euclidean embeddings of metrics.
- Continuity to action of diffeomorphisms \Rightarrow wavelets
- Known geometry \Rightarrow no need to learn. Unknown geometry: learn wavelets on appropriate groups.
- Can learn physics from prior on geometry and invariants.
- Multitude of open mathematical problems at interface of: geometry, harmonic analysis, probability, statistics, PDE.