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given n sample values {xi , yi = f(xi)}in

• High-dimensional x = (x(1), ..., x(d)) 2 Rd:

• Classification: estimate a class label f(x)

Sons

  High Dimensional Learning

Image Classification d = 106

Anchor Joshua Tree Beaver Lotus Water Lily d = 104/s
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• High-dimensional x = (x(1), ..., x(d)) 2 Rd:

• Regression: approximate a functional f(x)

given n sample values {xi , yi = f(xi) 2 R}in

  High Dimensional Learning

Physics:
Interaction energy f(x) of a system: x =

n

positions, values

o

Astronomy Quantum Chemistry

Many Body Problem

Sunday, November 16, 14



     Curse of Dimensionality

local interpolation if f is regular and there are close examples:

• f(x) can be approximated from examples {xi , f(xi)}i by

?
x

• Need ✏�d
points to cover [0, 1]d at a Euclidean distance ✏

) kx� xik is always large
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”Similarity” metric: �(x, x0)

Data:

How to define � ?

  Learning by Euclidean Embedding 

x 2 Rd

kx� x

0k: non-informative

�x 2 H
Representation

k�x� �x0k

�

Linear Classifier

C1 k�x� �x0k  �(x, x0)  C2 k�x� �x0k
Equivalent Euclidean metric:

x

Intelligence
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Diffusion�Maps

DIFFUSION�MAPS�Cohen, Gannot, Habets and Talmon \235

• Nonlinear�Dimensionality�Reduction

Swiss�roll�benchmark�example:

– A�2D�structure�lies�in�3D�space

– A�linear�mapping�is�not�applicable• If the data is in a low-dimensional manifold,

the manifold metric is locally nearly Euclidean:

• Embedding of Banach metrics over finite set of points {xi}i
, Euclidean embedding of graphs

no curse,

h�(x),�(x0)i = e

� kx�x

0k2

2�2

• x?

• Generalisation for all x: need to embed the full space.

Must impose a regularity condition on the metric.

Bourgain/Johnsone Lindenstrass

   Known Euclidean Embeddings

• x

• x

0

• x1
• x2

• x4

• x5

• x3

Sunday, November 16, 14



x

⇢(u) = |u|

: Wavelets !

Linear Classificat.

⇢

linear convolution

linear convolution

Optimize the Lk with support constraints: over 109 parameters

    Deep Convolution Neworks

L2

⇢

�(x)

...
Exceptional results for images, speech, bio-data classification.

Products by FaceBook, IBM, Google, Microsoft, Yahoo...

non-linear scalar:

L1

neuron

Why does it work so well ?

• The revival of an old (1950) idea: Y. LeCun
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        Overview

• Deep multiscale networks for embedding geometric metrics: 
invariance and continuity to diffeomorphisms 

• Models of random processes and image classification

• Learning physics: quantum chemistry energy regression
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x(u) x

0(u)

Invariant to translations

• Low-dimensional ”geometric shapes”

Grenander

Di↵eomorphism action: D⌧x(u) = x(u� ⌧(u))

            Image Metrics

(classic mechanics)
Deformation metric:

�(x, x0) ⇠ min
⌧

kD⌧x� x

0k+ kr⌧k1 kxk

di↵eomorphism

amplitude
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• High dimensional textures:

ergodic stationary processes

But not equivalent: need that

            Image Metrics

�(x, x0)  min
⌧

kD⌧x� x

0k+ kr⌧k1 kxk
Bounded by a deformation metric:

x

x

0

(statistical physics)

�(x0
, x) = 0 if x and x

0

are realisations of same process

x

x

0

• What metric on stationary processes ?

2D Turbulence
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• Embedding: find an equivalent Euclidean metric

k�x� �x0k ⇠ �(x, x0)

with �(x, x0)  min
⌧

kD⌧x� x

0k+ kr⌧k1 kxk

k�x� �x0k  C kx� x

0k

• Equivalent conditions on �:

D⌧ = Id )- Continuous in L

2:

x

0 = D⌧x ) k�x� �D⌧xk  C kr⌧k1 kxk

- Lipschitz continuous to di↵eomorphism actions:

    Euclidean Metric Embedding

) Invariance to translation

Sunday, November 16, 14



|bx(�)||bx⌧ (�)|

• Fourier transform x̂(!) =

R
x(t) e

�i!t
dt

The modulus is invariant to translations:

xc(t) = x(t� c) )

) k|x̂|� |x̂⌧ |k � kr⌧k1 kxk

• Continuous in L2
: k|x̂|� |x̂0|k  (2⇡)

�1/2kx� x

0k

�(x) = |x̂| = |x̂c|

   Fourier Deformation Instability

| |x̂⌧ (�)|� |x̂(�)| | is big at high frequencies
• Instabilites to small deformations x� (t) = x(t� �(t)) :

!
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rotated and dilated:

real parts imaginary parts

 �(t) = 2�j  (2�jr✓t) with � = (2j , ✓)

• Complex wavelet:  (t) = g(t) exp i⇠t , t = (t1, t2)

 Scale separation with Wavelets

|�̂�(⇥)|2

�1

�2

Wx =

✓
x ? �2J (t)
x ?  �(t)

◆

�2J
• Wavelet transform:

Preserves norm:

�Wx�2 = �x�2 .
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20

21

|x ?  21,✓|

      Fast Wavelet Transform

CHAPTER 2. TRANSLATION SCATTERINGAND CONVOLUTIONAL NETWORKS34

J = 3
C = 6
Q = 1

J = 5
C = 8
Q = 1

J = 3
C = 4
Q = 2

1.2

1.2

1.2

0

0

0

φJ

φJ

φJ

{ψθ,j}j,θ

{ψθ,j}j,θ

{ψθ,j}j,θ

A(ω)

A(ω)

A(ω)

θ

j

Figure 2.3: Three Morlet wavelet families with different sets of parameters. For each
set of parameters, we show, from left to right, the gaussian window φJ , all the Morlet
wavelets ψθ,j, and the associated Littlewood Paley sum A(ω). When the number of scales
J increases, so does the width of the low pass wavelet φJ . When the number of orientations
C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

|W1|

2J

Scale

Sunday, November 16, 14



20

22

23

2J

|x ?  22,✓|

|x ?  23,✓|

        Wavelet Transform

|W1|
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Scale

21

|x ?  21,✓|
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C increases or when the number of scales per octave Q decreases, the Morlet wavelets
become more elongated in the direction perpendicular to their orientation, and hence have
an increased angular sensitivity.

|W1|

x ? �J
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x(t)

|W1|x =

✓
x ? �2J

|x ?  �1 |

◆

�1

First wavelet transform

Modulus improves invariance:

W1x =

✓

x ?  �1

◆

�1

x ? �2J

    Wavelet Translation Invariance

x ?  �1(t) = x ?  

a
�1

(t) + i x ?  

b
�1

(t)|x ?  �1(t)| =
q

|x ?  a
�1

(t)|2 + |x ?  b
�1

(t)|2

|x ?  �1 | ? �2J (t)

2J

local translation invariance

x ? �2J (t)

full translation invariance

2J = 1

Second wavelet transform modulus

|W2| |x ?  �1 |=
✓

|x ?  �1 | ? �2J (t)
||x ?  �1 | ?  �2(t)|

◆

�2
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|x ⇥ ��000
1

(t)||x ⇥ ��00
1
(t)||x ⇥ ��0

1
(t)||x ⇥ ��1(t)|

x

x ? �2J

         Scattering Transform

|W1|
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x

x ? �2J

|x ?  �1 | ? �2J

||x ?  �1 | ?  �2(t)|

|W1|

|W2|

         Scattering Transform
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x

x ? �2J

|||x ?  �1 | ?  �2 | ?  �3 |

||x ?  �1 | ?  �2 | ? �2J

|W3|

|x ?  �1 | ? �2J

|W2|

|W1|

         Scattering Neural Network
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path variable
SJx(�1, ...,�m) = ||x ?  �1 | ? ...| ?  �m | ? �2J

x 2 L1 ) lim
J!1

SJx(�1, ...,�m) = k||x ?  �1 | ? ....| ?  �mk1

Scattering at 2J :

         Wavelet Scattering
x

x ? �2J

||x ?  �1 | ?  �2 | ? �2J

|W3|

|x ?  �1 | ? �2J

|W2|

|W1|

Theorem: The energy of last layer coe�cients converge to 0

lim
m!1

X

�1,...,�m

kSJx(�1, ...,�m)k2 = 0
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= . . . |W3| |W2| |W1|xSJx =

0

BBBB@

x ? �2J

|x ?  �1 | ? �2J
||x ?  �1 | ?  �2 | ? �2J

|||x ?  �2 | ?  �2 | ?  �3 | ? �2J
...

1

CCCCA

�1,�2,�3,...

preserves norms kSJxk = kxk

kWkxk = kxk ) k|Wkx|� |Wkx
0|k  kx� x

0kLemma : k[Wk, D⌧ ]k = kWkD⌧ �D⌧Wkk  C kr⌧k1

translations invariance and deformation stability:

if D⌧x(u) = x(u� ⌧(u)) then

lim
J!1

kSJD⌧x� SJxk  C kr⌧k1 kxk

      Scattering  Properties

contractive kSJx� SJyk  kx� yk (L2
stability)

Theorem: For appropriate wavelets, a scattering is
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LeCun et. al.

Classification Errors

Joan Bruna

Training size Conv. Net. Scattering

300 7.2% 4.4%
5000 1.5% 1.0%
50000 0.5% 0.4%

 Digit Classification: MNIST

Linear Classifier
SJx y = f(x)

x
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J. Bruna

     Classification of Textures

CUREt database
61 classes

Texte
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The scattering transform of a stationary process X(t)

SJX =

0

BBBB@

X ? �2J
|X ?  �1 | ? �2J

||X ?  �1 | ?  �2 | ? �2J
|||X ?  �2 | ?  �2 | ?  �3 | ? �2J

...

1

CCCCA

�1,�2,�3,...

converges to moments if X is ergodic when 2

J
increases

• Does E(SX) approximates well enough the distribution of X ?

Scattering  Moments of Processes

E(SX) =

0

BBBB@

E(X)
E(|X ?  �1 |)

E(||X ?  �1 | ?  �2 |)
E(|||X ?  �2 | ?  �2 | ?  �3 |)

...

1

CCCCA

�1,�2,�3,...
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J. Bruna

Scat. Moments

• Can characterise non-Gaussian processes

     Classification of Textures

CUREt database
61 classes

Texte

Linear Classifier
SJx y = f(x)

x

Training Fourier Histogr. Scattering
per class Spectr. Features

46 1% 1% 0.2 %

2J = image sizeClassification Errors
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UIUC database:
25 classes

Scattering classification errors

Training Scat. Translation

20 20 %

  Rotation and Scaling Invariance
Laurent Sifre
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(v, ✓) . x(u) = x(r�1
✓ (u� v))

action on an image:

(v, ✓)�1 = (�r�✓v,�✓)

• Action on wavelet coe�cients:

• Special Euclidean group G = {(v, ✓) 2 R2 ⇥ [0, 2⇡)}

 Extension to Rigid Mouvements
Laurent Sifre

x(u) |x ?  2j ,✓(u)| = xj(u , ✓)|W1|

R
x(u)du

(v0, ✓0).x(u) xj(r
�1
✓0 (u� v

0) , ✓ + ✓

0)|W1|

R
x(u)du
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group convolutions of xj(u, ✓)

xj ~  �2(u, ✓) =

Z

R2

Z 2⇡

0
xj(v

0
, ✓

0) �2

⇣
(v0, ✓0)�1 (u, ✓)

⌘
dv

0
d✓

0

• To build invariants: second wavelet transform on L2
(G):

with wavelets  �2(u, ✓)

• Scattering on rigid mouvements:

Wavelets on Rigid Mvt.

Wavelets on Rigid Mvt.

 Extension to Rigid Mouvements
Laurent Sifre

xj(u , ✓)

Wavelets on Translations

x(u)

R
x(u)du

|W1| |W2| |xj ~  �2(v, ✓)|

R
xj(u, ✓) dud✓

|W3|
Z

|xj ~  �2(v, ✓)|dud✓

 2k(✓)

Fast computations of roto-translation convolutions with
separable wavelet filters ⇥�2,j2,k2(u, �) = ⇤�2,j2(u)⇤k2

(�)
are performed by factorizing

Y �⇥�2,j2,k2(u, �)
=�

��
⌅�

u�
Y (u�, ��)⇤�2,j2(r⇥��(u ⇤ u�))⌥ ⇤k2

(� ⇤ ��) .

It is thus computed with a two-dimensional convolution of
Y (u, ��) with ⇤�2,j2(r⇥�u) along u = (u1, u2), followed
by a convolution of the output and a one-dimensional cir-
cular convolution of the result with ⇤k2

along �. Figure 5
illustrates this convolution which rotates the spatial support
⇤�2,j2(u) by � while multiplying its amplitude by ⇤k2

(�).

θ

u1
u2

ψθ2,j2(u1, u2)

ψk2
(θ)

Figure 5: A three dimensional roto-translation convolution
with a wavelet ⇥�2,j2,k2(u1, u2, �) can be factorized into a
two dimensional convolution with ⇤�2,j2(u1, u2) rotated by
� and a one dimensional convolution with ⇤k2

(�) .

Applying�W3 =�W2 to U2x computes second order scat-
tering coefficients as a convolution of Y (g) = U2x(g, p2)
with �J(g), for p2 fixed:

S2x(p2) = U2(., p2)x��J(g) . (18)

It also computes the next layer of coefficients U3x with
a roto-translation convolution of U2x(g, p2) with the
wavelets (13,14,15). In practice, we stop at the second or-
der because the coefficients of U3x carry a small amount of
energy, and have little impact on classification. One can in-
deed verify that the energy of Umx decreases exponentially
to zero as m increases.

The output roto-translation of a second order scattering
representation is a vector of coefficients:

Sx = ⇤S0x(u) , S1x(p1) , S2x(p2)⌃ , (19)

with p1 = (u, �1, j1) and p2 = (u, �1, j1, �2, j2, k2). The
spatial variable u is sampled at intervals 2J which corre-
sponds to the patch size. If x is an image of N2 pixels,

there are thus 2⇥2JN2 coefficients in S0x and 2⇥2JN2J
coefficients in S1x. Second order coefficients have a negli-
gible amplitude if j2 ⇥ j1. If the wavelet are rotated along
K angles � then one can verify that S2x has approxima-
tively 2⇥2JN2J(J ⇤ 1)K log2 K�2 coefficients. The to-
tal roto-translatation patch scattering Sx is of dimension
341N2�1024 for J = 5 and K = 8. The overall complexity
to compute this roto-translation scattering representation is
O(K2N2 logN).
4. Scaling Invariance of Log Scattering

Roto-translation scattering is computed over image
patches of size 2J where the image is approximately lo-
cally stationary. Above this size, perspective effects pro-
duce important scaling variations for different patches. A
joint scale-rotation-translation invariant must therefore be
applied to the scattering representation of each patch vector.
This is done with an averaging along the scale and transla-
tion variables, with a filter which is rotationally symmetric.
One could recover the high frequencies lost by this averag-
ing and compute a new layer of invariant through convo-
lutions on the joint scale-rotation-translation group. How-
ever, adding this supplementary information does not im-
prove texture classification so this last invariant is limited to
a global scale-space averaging.

The roto-translation scattering representations of all
patches at a scale 2J is given by

Sx = ⇤x ⇥ ⇥J(u) , U1x��J(p1) , U2x��J(p2)⌃ ,

with p1 = (u, �1, j1) and p2 = (u, �1, j1, �2, j2, k2). This
scattering vector Sx is not covariant to scaling. If xi(u) =
x(2iu) then

Sxi = ⇤x ⇥ ⇥J+i(2iu) , U1x��J+i(2i.p1)
U2x��J+i(2i.p2)⌃ .

with 2i.p1 = (2iu, �1, j1 + i) and 2i.p2 = (2iu, �1, j1 +
i, �2, j2+ i, k2). A covariant representation to scaling stores
the minimal subset of coefficients needed to recover all Sxi.
It thus require to compute the scattering coefficients for all
scales j1+i and j2+i for all averaging kernels ⇥J+i or �J+i,
similarly to spatial pyramid [16].

One can show that scattering coefficient amplitudes have
a power law decay as a function of the scales 2j1 and 2j2 .
To estimate an accurate average from a uniform sampling of
the variables j1 and j2, it is nessecary to bound uniformly
the variations of scattering coefficient as a function of j1 and
j2. This is done by applying a logarithm to each coefficient
of Sx, which nearly linearizes the dependency upon j1 and
j2. This logarithm plays a role which is similar to renor-
malizations used in bag of words [10] and deep convolution
networks [5].

��,2j (t1, t2)

t1t2
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UIUC database:
25 classes

Scattering classification errors

Training Scat. Translation Scat. Rigid Mouvt.

20 20 % 0.6%

  Rotation and Scaling Invariance
Laurent Sifre
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|W |x =
n

x ? �J , |x ?  �|
o

�

Theorem For appropriate wavelets and any J  1

x ? �J(t)

|W |

is invertible and the inverse is weakly continuous.

Proof: Complex analysis.

Scattering Inversion: Phase Recovery
I. Waldspurger

|x ⇥� �(t)|
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0

50

100

150

200

250

0 100 200 300 400 500
0

20

40
0 100 200 300 400 500
0

200

400

0 100 200 300 400 500
0

20

40

0 100 200 300 400 500
0

20

40

0 100 200 300 400 500
0

10

20

0 100 200 300 400 500
0

10

20

x(t)

0 50 100 150 200 250 300 350 400 450 500
0

50

100

150

200

250 |W |�1

Sunday, November 16, 14



• Compute x̃ such that:

8k, 8�1, ...,�k , SJ x̃(�1, ...,�k) = SJx(�1, ...,�k)

SJx(�1, ...,�k) =

Z

[0,2J ]2
||x ?  �1 | ? ...| ?  �k(u)| du

there are O(log

m
2 N) scattering coe�cients:

• If x is of period N = 2

J
, at orders k  m

  Inverse Scattering Transform
Joan Bruna
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Original images of N2 pixels:

For 2

J
= N , m = 1

Order m = 2

    Compressed Shape Sensing
Joan Bruna

Reconstruction from {kxk1 , kx ?  �1k1 , k|x ?  �1 | ?  �2k1} : O(log

2
2 N) coe↵.

Reconstruction from {kxk1 , kx ?  �1k1}�1 : O(log2 N) coe↵.

• Numerical recovery from 1st and 2nd order coe�cients:

Sunday, November 16, 14



For 2

J
= N : O(logN2

) scattering moments:

 Ergodic Texture Reconstructions
Joan BrunaOriginal Textures

Gaussian process model with same second order moments

kx ?  �1k1 ⇡ E(|x ?  �1 |) , k|x ?  �1 | ?  �2k1 ⇡ E(||x ?  �1 | ?  �2 |)

2D Turbulence
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Original

Water

Paper

Cocktail Party

Scattering

• x 2 Rd
realization of a stationary process

Gaussian model

Representation of Audio Textures
Joan Bruna
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N2
pixels

Multiscale Scattering Reconstructions

Original
Images

2J = 16

Scattering
Reconstruction

1.4N2
coe↵.

2J = 64
N2/8 coe↵.
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Classification Accuracy

SJx

Data Basis Deep-Net Scat.-2
CalTech-101 85% 80%
CIFAR-10 90% 80%

Rigid Mvt.

Scattering almost linearises these classification problems.

computes invariants

  Complex Image Classification

BateauNénuphareMetronome CastoreArbre de Joshua Ancre

CalTech 101 data-basis:

Linear Classif. y
x

Edouard Oyallon
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• Energy of d interacting bodies:

Can we learn the interaction energy f(x) of a system

with x =

n

positions, values

o

?

Astronomy

Quantum Chemistry

 Learning Physics: N-Body Problem

Matthew Hirn
N. Poilvert
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• Energy of d interacting bodies (Coulomb):

for point charges x(u) =

dX

k=1

qk �(u� pk) then

potential V (r) = |r|��
: f(x) =

dX

k=1

dX

k0=1

qk qk0

|pk � pk0 |�

diagonalized in Fourier :

f(x) = (2⇡)�2

Z
|x̂(!)|2 V̂ (!) d!

can be approximated at best by summing ⇠ d terms.

    Second Order Interactions
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(Rocklin, Greengard)

Potential V (u) = |u|�� )

    Many Body Interactions

Matthew Hirn

each particle interacts with O(log d) groupsFast multipoles:

O(log d) terms

f(x) =
X

�

v� kx ?  �k2 (1 + ✏)

For any ✏ > 0 there exists wavelets with

Theorem:

N. Poilvert

• Energy of d interacting bodies (Coulomb):
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with
Organic molecules

Hydrogne, Carbon
Nitrogen, Oxygen
Sulfur, Chlorine

          Quantum Chemistry

Protonic charges of a molecule: x(u) =

Pd
k=1 qk �(u� pk)

Atomic energy f(x) = molecule energy - isolated atoms energy

Density Functional Theory: computes the electronic density ⇢(u)
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Atomic energy f is computed from each electronic orbital �k(u)

⇢(u) =
KX

k=1

|�k(u)|2

deformation stable• f(x) is invariant to isometries and is

Kohn-Sham model:

  Quantum Chemistry

f(x) = E(⇢) = T (⇢) +

Z
⇢(u)V (u) +

1

2

Z
⇢(u)⇢(v)

|u� v| dudv + E

xc

(⇢)

Kinetic
energy

Atomic

energy

where ⇢ minimises the energy E(⇢)

electron-electron

Coulomb repulsion

electron-nuclei

attraction

Exchange

correlat. energy
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   Quantum Chemistry

fM (x) =
MX

k=1

wk �nk(x)

Partial Least Square regression on the training set:

Matthew Hirn

   Quantum Chemistry
N. Poilvert

• Data bases {xi , f(xi)}i of 2D molecules with up to 20 atoms

invariant to action of isometries in R3
:

scattering coe�cients and squared

• Sparse regression computed over a representation

�x = {�n(x)}n :
Fourier modulus coe�cients and squared

or
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4000 molecules

   Quantum Chemistry

log2 E|f(x)� fM (x)|2: testing error

) forces: rf(x) =

P
k wk r�nk(x)

Matthew Hirn

   Quantum Chemistry
N. Poilvert

• Data bases {xi , f(xi)}i of 2D molecules with up to 20 atoms

Coulomb

Kernel

Scattering

Fourier modulus

400 molecules

fM (x) =
MX

k=1

wk �nk(x)

M

�n2(x) = kx ?  �1k1
�n1(x) =

R
x(u) du: total charge

3.7 kcal/mol

Sunday, November 16, 14



CIFAR-10: 10 classes with 500 training images per class

Cars Dogs Ships

 Learning with Unknown Geometry

Do not learn the geometry (NP complete)

Learn the support of multiscale wavelets (polynomial algo.)

Learned Haar Scattering : 27% errors (state of the art)

If the geometry is unknown (permutation of pixels):

Xu Chen, Xiu Cheng
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• Multitude of open mathematical problems at interface of:

geometry, harmonic analysis, probability, statistics, PDE.

• A major challenge of data analysis is to find

Euclidean embeddings of metrics.

• Continuity to action of di↵eomorphisms ) wavelets

• Can learn physics from prior on geometry and invariants.

        Conclusion

Unknown geometry: learn wavelets on appropriate groups.

• Known geometry ) no need to learn.
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